PD-94810
IRG4BC30UDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-220AB package • Lead-Free
C
UltraFast CoPack IGBT
VCES = 600V
G E
VCE(on) typ. = 1.95V
@VGE = 15V, IC = 12A
n-channel
Benefits
• Generation -4 IGBT's offer highest efficiencies available • IGBTs optimized for specific application conditions • HEXFRED diodes optimized for performance with IGBTs . Minimized recovery characteristics require less/no snubbing • Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBTs
TO-220AB
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
600 23 12 92 92 12 92 ± 20 100 42 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
V W °C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
-------------------------
Typ.
----------0.50 ----2 (0.07)
Max.
1.2 2.5 -----80 ------
Units
°C/W
g (oz)
www.irf.com
1
11/3/03
IRG4BC30UDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆ TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage V(BR)CES Min. 600 ------------Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage ---Forward Transconductance 3.1 Zero Gate Voltage Collector Current ------Diode Forward Voltage Drop ------Gate-to-Emitter Leakage Current ---Typ. Max. Units ------V 0.63 ---- V/°C 1.95 2.1 2.52 ---V 2.09 ------- 6.0 -11 ---- mV/°C 8.6 ---S ---- 250 µA ---- 2500 1.4 1.7 V 1.3 1.6 ---- ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 12A VGE = 15V IC = 23A See Fig. 2, 5 IC = 12A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 12A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 12A See Fig. 13 IC = 12A, TJ = 150°C VGE = ±20V
VGE(th) ∆VGE(th)/∆TJ gfe ICES V FM IGES
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres t rr Irr Qrr di (rec)M/dt
Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb
Min. ----------------------------------------------------------------------------------
Typ. 50 8.1 18 40 21 91 80 0.38 0.16 0.54 40 22 120 180 0.89 7.5 1100 73 14 42 80 3.5 5.6 80 220 180 120
Max. Units Conditions 75 IC = 12A 12 nC VCC = 400V See Fig. 8 27 VGE = 15V ---TJ = 25°C ---ns IC = 12A, VCC = 480V 140 VGE = 15V, RG = 23 Ω 130 Energy losses include "tail" and ---diode reverse recovery. ---mJ See Fig. 9, 10, 11, 18 0.9 ---TJ = 150°C, See Fig. 9, 10, 11, 18 ---ns IC = 12A, VCC = 480V ---VGE = 15V, RG = 23 Ω ---Energy losses include "tail" and ---mJ diode reverse recovery. ---nH Measured 5mm from package ---VGE = 0V ---pF VCC = 30V See Fig. 7 ---ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 12A 6.0 A TJ = 25°C See Fig. 10 TJ = 125°C 15 VR = 200V 180 nC TJ = 25°C See Fig. 600 TJ = 125°C 16 di/dt 200A/µs ---- A/µs TJ = 25°C See Fig. ---TJ = 125°C 17
2
www.irf.com
IRG4BC30UDPbF
16
Load Current ( A )
12
Duty cycle: 50% TJ = 125°C T sink = 90°C Gate drive as specified Turn-on losses include effects of reverse recovery
Power Dissipation = 21W 60% of rated voltage
8
I
4
0 0.1 1 10
A
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
IC , Collector-to-Emitter Current (A)
TJ = 25°C TJ = 150°C
10
IC , Collector-to-Emitter Current (A)
TJ = 150°C
10
TJ = 25°C
1
1
0.1 0.1 1
VGE = 15V 20µs PULSE WIDTH A
10
0.1 5 6 7 8
V CC = 10V 5µs PULSE WIDTH A
9 10 11 12
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4BC30UDPbF
3.0
Maximum DC Collector Current (A
25
VCE , Collector-to-Emitter Voltage (V)
V GE = 15V
V GE = 15V 80µs PULSE WIDTH
IC = 24A
20
2.5
15
IC = 12A
2.0
10
5
I C = 6.0A
A
-60 -40 -20 0 20 40 60 80 100 120 140 160
1.5
0 25 50 75 100 125
A
150
TC , Case Temperature (°C)
TJ , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
1
D = 0.50 0.20 0.10
P DM
0.1
0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
t
1 t2
Notes: 1. Duty factor D = t / t 12 2. Peak TJ = P DM x Z thJC + T C
0.01 0.00001
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC30UDPbF
2000
C, Capacitance (pF)
1600
VGE , Gate-to-Emitter Voltage (V)
A
V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc
20
VCE = 400V I C = 12A
16
Cies
1200
12
800
Coes Cres
8
400
4
0 1 10
0 0 10 20 30 40
A
50
100
VCE, Collector-to-Emitter Voltage (V)
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.60
10
Total Switchig Losses (mJ)
0.58
Total Switchig Losses (mJ)
V CC = 480V V GE = 15V T J = 25°C I C = 12A
R G = 23Ω V GE = 15V V CC = 480V I C = 24A
0.56
1
I C = 12A I C = 6.0A
0.54
0.52
0.50 0 10 20 30 40 50
A
60
0.1 -60 -40 -20 0 20 40 60 80
A 100 120 140 160
R G, Gate Resistance ( Ω )
TJ , Junction Temperature (°C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4BC30UDPbF
2.0
Total Switchig Losses (mJ)
1.6
I C , Collector-to-Emitter Current (A)
R G = 23 Ω T J = 150°C V CC = 480V V GE = 15V
1000
VGE = 20V GE TJ = 125°C
100
1.2
SAFE OPERATING AREA
10
0.8
1
0.4
0.0 0 10 20
A 30
0.1 1 10 100 1000
IC , Collector-to-Emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Instantaneous Forward Current - I F (A)
TJ = 150°C
10
TJ = 125°C TJ = 25°C
1 0.4
0.8
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4BC30UDPbF
160 100
VR = 200V TJ = 125°C TJ = 25°C
120
VR = 200V TJ = 125°C TJ = 25°C
I F = 24A I F = 12A
80
I IRRM - (A)
I F = 24A
10
t rr - (ns)
I F = 12A IF = 6.0A
I F = 6.0A
40
0 100
di f /dt - (A/µs)
1000
1 100
di f /dt - (A/µs)
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
600
10000
VR = 200V TJ = 125°C TJ = 25°C
VR = 200V TJ = 125°C TJ = 25°C
400
di(rec)M/dt - (A/µs)
1000
Q RR - (nC)
IF = 6.0A
I F = 24A
200
I F = 12A
I F = 12A
100
IF = 6.0A
IF = 24A
0 100
di f /dt - (A/µs)
1000
10 100
di f /dt - (A/µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4BC30UDPbF
90% Vge +Vge
Same type device as D.U.T.
Vce
Ic
10% Vce
90% Ic Ic 5% Ic
80% of Vce
430µF D.U.T.
td(off) tf
Eoff =
∫
t1+5µS Vce ic dt t1
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
Ic
trr
Qrr =
∫
trr id dt tx
tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk
10% Irr Vcc
Vpk
Irr
Ic DIODE RECOVERY WAVEFORMS
td(on)
tr
5% Vce t2 Eon = Vce ie dt t1
∫
t1
t2
DIODE REVERSE RECOVERY ENERGY t3
t4 Erec = Vd id dt t3
∫
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4BC30UDPbF
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
18 .
18 '
L 1000V 50V 6000µF 100V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
19.
20.
www.irf.com
9
IRG4BC30UDPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN
LEAD ASSIGNMENTS
HEXFET
14.09 (.555) 13.47 (.530)
4- DRAIN
4.06 (.160) 3.55 (.140)
4- COLLECTOR
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED O N WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIO NAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER
Note: "P" in assembly line position indicates "Lead-Free"
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/03
10
www.irf.com
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/