PD - 91790
IRG4BC30W-S
INSULATED GATE BIPOLAR TRANSISTOR
Features
• Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications • Industry-benchmark switching losses improve efficiency of all power supply topologies • 50% reduction of Eoff parameter • Low IGBT conduction losses • Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability
C
VCES = 600V
G E
VCE(on) typ. = 2.10V
@VGE = 15V, IC = 12A
n-channel
Benefits
• Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) • Of particular benefit to single-ended converters and boost PFC topologies 150W and higher • Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz)
D 2 Pak
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds
Max.
600 23 12 92 92 ± 20 180 100 42 -55 to + 150 300 (0.063 in. (1.6mm from case )
Units
V A
V mJ W
°C
Thermal Resistance
Parameter
RθJC RθJA Junction-to-Case Junction-to-Ambient, ( PCB Mounted,steady-state)*
Typ.
––– –––
Max.
1.2 40
Units
°C/W
* When mounted on 1" square PCB (FR-4 or G-10 Material ). For recommended footprint and soldering
techniques refer to application note #AN-994.
www.irf.com
1
8/13/98
IRG4BC30W-S
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES V(BR)ECS
∆V(BR)CES/∆TJ
VCE(ON) VGE(th) ∆VGE(th)/∆TJ gfe ICES
IGES
Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 — — V VGE = 0V, IC = 250µA Emitter-to-Collector Breakdown Voltage 18 — — V VGE = 0V, IC = 1.0A Temperature Coeff. of Breakdown Voltage — 0.34 — V/°C VGE = 0V, IC = 1.0mA — 2.1 2.7 IC = 12A VGE = 15V Collector-to-Emitter Saturation Voltage — 2.45 — IC = 23A See Fig.2, 5 V — 1.95 — IC = 12A , TJ = 150°C Gate Threshold Voltage 3.0 — 6.0 VCE = VGE, IC = 250µA Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = VGE, IC = 250µA Forward Transconductance
11 16 — S VCE = 100 V, IC = 12A — — 250 VGE = 0V, VCE = 600V Zero Gate Voltage Collector Current µA — — 2.0 VGE = 0V, VCE = 10V, TJ = 25°C — — 1000 VGE = 0V, VCE = 600V, TJ = 150°C Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. 51 7.6 18 25 16 99 67 0.13 0.13 0.26 24 17 150 150 0.55 7.5 980 71 18 Max. Units Conditions 76 IC = 12A 11 nC VCC = 400V See Fig.8 27 VGE = 15V — — TJ = 25°C ns 150 IC = 12A, VCC = 480V 100 VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 9, 10, 13, 14 0.35 — TJ = 150°C, — IC = 12A, VCC = 480V ns — VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 11,13, 14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω,
(See fig. 13a)
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4BC30W-S
5.0
For both:
Triangular wave:
4.0
Load C u rren t (A )
Duty cycle: 50% T J = 125°C T sink 90°C = Gate drive as specified Power Dissipation = 1.75W
Clamp voltage: 80% of rated
3.0
Square wave: 60% of rated voltage
2.0
1.0 Ideal diodes
0.0 0.1 1 10 100
A
1000
f, F req uen cy (kH z)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I RMS of fundamental; for triangular wave, I=IPK)
100
100
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 150 °C
10
TJ = 150 °C
10
TJ = 25 °C
TJ = 25 °C
1
1 1
V GE = 15V 20µs PULSE WIDTH
10
0.1 5.0
V CC = 50V 5µs PULSE WIDTH
6.0 7.0 8.0 9.0 10.0 11.0
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4BC30W-S
M a xim u m D C C o lle c to r C u rre n t (A
25
V GE = 15V
3.0
VGE = 15V 80 us PULSE WIDTH I C = 24 A
20
VCE , Collector-to-Emitter Voltage(V)
2.5
15
I C = 12 A
10
2.0
IC =
6A
5
0 25 50 75 100 125
A
150
1.5 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , C a s e Te m p e ra tu re (°C )
TJ , Junction Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Temperature
Case
Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC)
1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1
0.01 0.00001
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC30W-S
2000
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 12A
16
1500
C, Capacitance (pF)
Cies
1000
12
8
500
Coes Cres
4
0 1 10 100
0 0 10 20 30 40 50 60
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.5
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 ° C 0.4 I C = 12A
10
23Ω RG = Ohm VGE = 15V VCC = 480V
IC = 24 A
1
0.3
IC = 12 A IC =
6A
0.2
0.1
0.1
0.0 0 10 20 30 40 50
0.01 -60 -40 -20
0
20
40
60
80 100 120 140 160
RGR, , Gate Resistance(Ohm) Gate Resistance (Ω) G
TJ , Junction Temperature ( ° C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4BC30W-S
1.5
I C , C ollector-to-E m itter C urrent (A )
Total Switching Losses (mJ)
RG TJ VCC VGE
23Ω = Ohm = 150 °C = 480V = 15V
1000
VG E E 2 0V G= T J = 12 5 °C
100
1.0
S A FE O P E R A TIN G A R E A
10
0.5
1
0.0 0 5 10 15 20 25 30
0 .1 1 10 100 1000
I C , Collector-to-emitter Current (A)
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
6
www.irf.com
IRG4BC30W-S
L 50V 1 00 0V VC *
D .U .T.
RL = 0 - 480V 480V 4 X IC@25°C
480µF 960V
* Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax ) * Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor w ill inc rea se to obta in ra ted Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L D river* 50V 1000V
* Driver same type as D.U.T., VC = 480V
D .U .T. VC
Fig. 14a - Switching Loss
Test Circuit
9 0%
1 0% 90 %
VC
t d (o ff)
Fig. 14b - Switching Loss
Waveforms
10 % IC 5% t d (o n )
tr E on E ts = ( Eo n +E o ff )
tf t =5µ s E o ff
www.irf.com
7
IRG4BC30W-S
D2Pak Package Outline
1 0 .5 4 (.4 1 5 ) 1 0 .2 9 (.4 0 5 ) 1 .4 0 (.0 55 ) M A X. -A2 4 .6 9 (.1 8 5 ) 4 .2 0 (.1 6 5 ) -B1 .3 2 (.0 5 2 ) 1 .2 2 (.0 4 8 ) 6 .4 7 (.2 5 5 ) 6 .1 8 (.2 4 3 ) 1 5 .4 9 (.6 1 0 ) 1 4 .7 3 (.5 8 0 ) 5 .2 8 (.2 0 8 ) 4 .7 8 (.1 8 8 ) 1 .4 0 (.0 5 5 ) 1 .1 4 (.0 4 5 ) 3X 5 .0 8 (.2 0 0 ) 1 .3 9 (.0 5 5 ) 1 .1 4 (.0 4 5 ) 2 .7 9 (.1 1 0 ) 2 .2 9 (.0 9 0 ) 2 .6 1 (.1 0 3 ) 2 .3 2 (.0 9 1 ) 8 .8 9 (.3 5 0 ) REF. 1 0 .1 6 (.4 0 0 ) REF .
1 .7 8 (.0 7 0 ) 1 .2 7 (.0 5 0 )
1
3
3X
0 .9 3 (.0 3 7 ) 0 .6 9 (.0 2 7 ) 0 .2 5 (.0 1 0 ) M BAM
0 .5 5 (.0 2 2 ) 0 .4 6 (.0 1 8 )
M IN IM U M R E C O M M E N D E D F O O T P R IN T 1 1 .43 (.4 5 0 )
NOTES: 1 D IM E N S IO N S A F T E R S O L D E R D IP . 2 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 3 C O N T R O L L IN G D IM E N S IO N : IN C H . 4 H E A T S IN K & L E A D D IM E N S IO N S D O N O T IN C L U D E B U R R S .
L E A D A S S IG N M E N T S 1 - GATE 2 - D R A IN 3 - SOURCE
8 .8 9 (.3 5 0 ) 1 7 .7 8 (.7 0 0 )
3 .8 1 (.1 5 0 ) 2 .0 8 (.0 8 2 ) 2X 2 .5 4 (.1 0 0 ) 2X
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice.8/98
8
www.irf.com