PD - 95173
IRG4BC30WPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
• Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications • Industry-benchmark switching losses improve efficiency of all power supply topologies • 50% reduction of Eoff parameter • Low IGBT conduction losses • Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability • Lead-Free
C
VCES = 600V
G E
VCE(on) max. = 2.70V
@VGE = 15V, IC = 12A
n-channel
Benefits
• Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) • Of particular benefit to single-ended converters and boost PFC topologies 150W and higher • Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz)
TO-220AB
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy S Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw.
Max.
600 23 12 92 92 ± 20 180 100 42 -55 to + 150 300 (0.063 in. (1.6mm from case ) 10 lbf•in (1.1N•m)
Units
V A
V mJ W
°C
Thermal Resistance
Parameter
RθJC RθCS RθJA Wt Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight
Typ.
––– 0.50 ––– 1.44
Max.
1.2 ––– 80 –––
Units
°C/W g
www.irf.com
1
04/23/04
IRG4BC30WPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES V(BR)ECS
∆V(BR)CES/∆TJ
VCE(ON) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 — Emitter-to-Collector Breakdown Voltage T 18 — Temperature Coeff. of Breakdown Voltage — 0.34 — 2.1 Collector-to-Emitter Saturation Voltage — 2.45 — 1.95 Gate Threshold Voltage 3.0 — Temperature Coeff. of Threshold Voltage — -11 Forward Transconductance U 11 16 — — Zero Gate Voltage Collector Current — — — — Gate-to-Emitter Leakage Current — —
Max. Units Conditions — V VGE = 0V, IC = 250µA — V VGE = 0V, IC = 1.0A — V/°C VGE = 0V, IC = 1.0mA 2.7 IC = 12A VGE = 15V — IC = 23A See Fig.2, 5 V — IC = 12A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100 V, IC = 12A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. 51 7.6 18 25 16 99 67 0.13 0.13 0.26 24 17 150 150 0.55 7.5 980 71 18 Max. Units Conditions 76 IC = 12A 11 nC VCC = 400V See Fig.8 27 VGE = 15V — — TJ = 25°C ns 150 IC = 12A, VCC = 480V 100 VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 9, 10, 13, 14 0.35 — TJ = 150°C, — IC = 12A, VCC = 480V ns — VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 11,13, 14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
R VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω,
(See fig. 13a)
T Pulse width ≤ 80µs; duty factor ≤ 0.1%. U Pulse width 5.0µs, single shot.
S Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4BC30WPbF
40 F o r b o th :
T ria n g u la r w a v e :
Load Current ( A )
30
D uty c y c le: 50% TJ = 125° C T s ink = 90°C G ate drive as s pec ified
P o w e r D i s si p a tio n = 2 1 W
C la mp vo lta g e : 8 0 % o f ra te d
S q u a re wa ve: 20 6 0 % o f ra te d vo l ta g e
10 Id e a l d io de s
0 0.1 1 10
A
100
f, Freq uenc y (k Hz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
100
100
I C , Collector-to-Emitter Current (A)
I C, Collector-to-Emitter Current (A)
TJ = 150 °C
10
TJ = 150 °C
10
TJ = 25 °C
TJ = 25 °C
1
1
V = 15V 20µs PULSE WIDTH
GE 1 10
0.1 5.0
V = 50V 5µs PULSE WIDTH
CC 6.0 7.0 8.0 9.0 10.0 11.0
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4BC30WPbF
M a xim u m D C C o lle c to r C u rre n t (A
25
V GE = 15V
3.0
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
20
I C = 24 A
2.5
15
I C = 12 A
2.0
10
IC = 6 A
5
0 25 50 75 100 125
A
150
1.5 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , C a s e Te m p e ra tu re (°C )
TJ , Junction Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC)
1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
0.01 0.00001
0.0001
0.001
0.01
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.1
PDM t1 t2 1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC30WPbF
2000
VGE , Gate-to-Emitter Voltage (V)
1500
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 12A
16
C, Capacitance (pF)
Cies
1000
12
8
500
C oes C res
4
0
0 1 10 100
0
10
20
30
40
50
60
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.5
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 ° C 0.4 I C = 12A
10
23Ω RG = Ohm VGE = 15V VCC = 480V
IC = 24 A
1
0.3
IC = 12 A IC = 6 A
0.2
0.1
0.1
0.0
0
10
20
30
40
50
0.01 -60 -40 -20
0
20
40
60
80 100 120 140 160
RGR, , Gate Resistance(Ohm) Gate Resistance (Ω) G
TJ , Junction Temperature ( ° C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4BC30WPbF
1.5
I C , C ollector-to-E m itter C urrent (A )
Total Switching Losses (mJ)
RG TJ VCC VGE
23Ω = Ohm = 150 °C = 480V = 15V
1000
VG E E 2 0V G= T J = 12 5 °C
100
1.0
S A FE O P E R A TIN G A R E A
10
0.5
1
0.0
0 .1
0
5
10
15
20
25
30
1
10
100
1000
I C , Collector-to-emitter Current (A)
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
6
www.irf.com
IRG4BC30WPbF
L 50V 1 00 0V VC *
D .U .T.
RL = 0 - 480V
480V 4 X IC@25°C
480µF 960V
Q
R
* Driver s am e ty p e as D .U .T.; Vc = 80% of V ce ( m ax ) * Note: D ue to the 50V p ow er s u p p l y , p ulse w idth a nd inductor w ill inc rea se to obta in ra ted Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L D river* 50V 1000V Q R S VC D .U .T.
Fig. 14a - Switching Loss
Test Circuit
* Driver same type as D.U.T., VC = 480V
Q
R
9 0%
S
1 0% 90 %
VC
t d (o ff)
Fig. 14b - Switching Loss
Waveforms
10 % IC 5% t d (o n )
tr E on E ts = ( Eo n +E o ff )
tf t =5µ s E o ff
www.irf.com
7
IRG4BC30WPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.5 4 (.415 ) 10.2 9 (.405 ) 3.78 (.14 9) 3.54 (.13 9) -A 6.47 (.255 ) 6.10 (.240 ) -B 4.69 (.1 85) 4.20 (.1 65) 1 .3 2 (.052) 1 .2 2 (.048) 2.87 (.11 3) 2.62 (.10 3)
4 15 .24 (.60 0) 14 .84 (.58 4)
1 .15 (.045) M IN 1 2 3
LE A D A S S IG N M E N T S IG B T s, C oP A C K 1 - G A TE 1- G ATE 1 - G A T2E- D R A IN 32 - D R A IN S O U R C E 2 - C O L L E C T O R 3 - E M IT T E R 3 - S O U R C E A IN 4 - DR
L E A D A S S IG N M E N T S
HE XFE T
14.09 ( .555 ) 13.47 ( .530 )
4 - D R A IN
4 .06 (.16 0) 3 .55 (.14 0)
4 - C O LL EC T O R
3X 3X 1.40 ( .055 ) 1.15 ( .045 )
0 .93 (.0 37 ) 0 .69 (.0 27 ) M B A M
3X
0.55 (.0 22) 0.46 (.0 18)
0.3 6 (.0 14 )
2.5 4 (.10 0) 2X N O TE S : 1 D IM E N S IO N IN G & TO LE R A N C IN G P E R A N S I Y 14.5M , 19 82. 2 C O N TR O LLIN G D IM E N S IO N : IN C H
2.92 (.11 5) 2.64 (.10 4)
3 O U TLIN E C O N F O R M S T O J E D E C O U T LIN E T O -2 20A B . 4 H E A T S IN K & LE A D M E A S U R E M E N TS D O N O T IN C LU D E B U R R S .
TO-220AB Part Marking Information
E X AM P L E : T H IS IS AN IR F 1 0 1 0 L O T COD E 17 89 AS S E M B L E D O N W W 1 9 , 1 9 9 7 I N T H E AS S E M B L Y L IN E "C " IN T E R N AT IO N A L R E C T IF IE R L O GO AS S E M B L Y L O T CO D E P AR T N U M B E R
N o te : " P " in as s em b ly lin e po s itio n in dica te s "Le ad -F ree "
D AT E C O D E Y E AR 7 = 1 9 9 7 WE E K 19 L IN E C
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/04
8
www.irf.com