PD -91689A
IRG4IBC20KD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• High switching speed optimized for up to 25kHz with low VCE(on) • Short Circuit Rating 10µs @ 125°C, VGE = 15V • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-220 FULLPAK
C
Short Circuit Rated UltraFast IGBT
VCES = 600V
G E
VCE(on) typ. = 2.27V
@VGE = 15V, IC = 6.3A
n-ch an nel
Benefits
• Generation 4 IGBTs offer highest efficiencies available maximizing the power density of the system • IGBTs optimized for specific application conditions • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise EMI • Designed to exceed the power handling capability of equivalent industry-standard IGBTs
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VISOL VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
600 11.5 6.3 23 24 6.3 24 10 2500 ± 20 34 14 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
µs V W °C
Thermal Resistance
Parameter
RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight
Typ.
––– ––– ––– 2.0 (0.07)
Max.
3.7 5.5 65 –––
Units
°C/W g (oz)
www.irf.com
1
4/24/2000
IRG4IBC20KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES
Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown VoltageS 600 — — V Temperature Coeff. of Breakdown Voltage — 0.49 — V/°C Collector-to-Emitter Saturation Voltage — 2.27 2.8 — 3.01 — V — 2.43 — Gate Threshold Voltage 3.0 — 6.0 Temperature Coeff. of Threshold Voltage — -10 — mV/°C Forward Transconductance T 2.9 4.3 — S Zero Gate Voltage Collector Current — — 250 µA — — 1000 Diode Forward Voltage Drop — 1.4 1.7 V — 1.3 1.6 Gate-to-Emitter Leakage Current — — ±100 nA
Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 9.0A VGE = 15V See Fig. 2, 5 IC = 16A IC = 9.0A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 9.0A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 8.0A See Fig. 13 IC = 8.0A, TJ = 150°C VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 34 51 IC = 9.0A 4.9 7.4 nC VCC = 400V See Fig.8 14 21 VGE = 15V 54 — 34 — TJ = 25°C ns 180 270 IC = 9.0A, VCC = 480V 72 110 VGE = 15V, RG = 50Ω 0.34 — Energy losses include "tail" 0.30 — mJ and diode reverse recovery 0.64 0.96 See Fig. 9,10,14 — — µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 50Ω , VCPK < 500V 51 — TJ = 150°C, See Fig. 10,11,14 37 — IC = 9.0A, VCC = 480V ns 220 — VGE = 15V, RG = 50Ω 160 — Energy losses include "tail" 0.85 — mJ and diode reverse recovery 7.5 — nH Measured 5mm from package 450 — VGE = 0V 61 — pF VCC = 30V See Fig. 7 14 — ƒ = 1.0MHz 37 55 ns TJ = 25°C See Fig. 55 90 TJ = 125°C 14 IF = 8.0A 3.5 5.0 A TJ = 25°C See Fig. 4.5 8.0 TJ = 125°C 15 VR = 200V 65 138 nC TJ = 25°C See Fig. 124 360 TJ = 125°C 16 di/dt = 200Aµs 240 — A/µs TJ = 25°C See Fig. 210 — TJ = 125°C 17
2
www.irf.com
IRG4IBC20KD
8
For both:
7 6 5
S q u a re w a v e :
LOAD CURRENT (A)
D uty cy cle: 50% TJ = 125 ° C T s ink = 90 ° C G ate drive as specified
P ow e r Dis sip ation = 9.5 W
4 3 2
6 0% of rate d volta ge
I
Id e a l d io d e s
1 0 0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
TJ = 25 o C TJ = 150 o C
10
I C , Collector-to-Emitter Current (A)
I C, Collector-to-Emitter Current (A)
10
TJ = 150 o C
TJ = 25 oC V = 50V 5µs PULSE WIDTH
CC 5 10 15 20
1 1
V = 15V 20µs PULSE WIDTH
GE 10
1
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4IBC20KD
12 5.0 10
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
Maximum DC Collector Current(A)
4.0
IC = 18 A
8
6
3.0
IC = 9.0A 9A
2.0
4
IC = 4.5 A
2
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( ° C)
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
10
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.02 0.01
0.1
SINGLE PULSE (THERMAL RESPONSE) 0.0001 0.001 0.01
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.1 1
P DM t1 t2 10
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC20KD
800
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
600
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 9.0A
16
Cies
400
12
8
200
C oes C res
4
0 1 10 100
0 0 10 20 30 40
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
0.8
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
10
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 ° C I C = 9.0A
RG 50Ohm =Ω VGE = 15V VCC = 480V
IC = 18 A
0.7
1
IC = 9.0A 9A IC = 4.5 A
0.6
0.5 0 10 20 30 40 50
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG , Gate Resistance ( Ω ) RG , Gate Resistance (Ohm)
TJ , Junction Temperature (° C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4IBC20KD
3.0
Total Switching Losses (mJ)
2.0
I C, Collector Current (A)
8 12 16 20
RG TJ VCC VGE
= 50 Ω Ohm = 150° C = 480V = 15V
100
VGE = 20V T J = 125 o C
10
1.0
0.0 0 4
SAFE OPERATING AREA
1 1 10 100 1000
I C , Collector-to-emitter Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instantan eou s Forwa rd C urre nt - I F (A )
10
TJ = 15 0 ° C TJ = 12 5 ° C TJ = 2 5 ° C
1
0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
F o rwa rd V olta g e D rop - V FM ( V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC20KD
100 100
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
80
VR = 2 0 0 V TJ = 1 2 5 ° C TJ = 2 5 °C
IF = 16 A
t rr - (ns)
60
I F = 8 .0A
I IR R M - (A )
I F = 1 6A
10
40
IF = 8 .0 A I F = 4.0 A
I F = 4 .0 A
20
0 100
d i f /d t - ( A / µ s )
1000
1 100
1000
di f /dt - ( A / µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
500
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
400
VR = 2 0 0 V TJ = 1 2 5 ° C TJ = 2 5 °C
300
d i(re c)M /d t - (A /µs)
Q R R - (n C )
I F = 16 A
200
I F = 4 .0A
1000
I F = 8.0 A I F = 16 A
I F = 8 .0A
100
IF = 4.0 A
0 100 100 100
di f /dt - ( A / µ s )
1000
1000
di f /dt - ( A / µ s )
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4IBC20KD
Same ty pe device as D .U.T. 90% Vge +Vge
V ce 80% of Vce 430µF D .U .T. Ic 10% Vce Ic 5 % Ic td (o ff) tf 9 0 % Ic
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
E o ff =
∫
t1 + 5 µ S V c e Ic Vceic d tdt t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
∫
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
∫
E re c =
∫
t4 V d idIc t dt Vc d t3
t1
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4IBC20KD
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µ F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4IBC20KD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 50Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot.
Case Outline TO-220 FULLPAK
1 0 .6 0 ( .4 1 7 ) 1 0 .4 0 ( .4 0 9 ) ø 3 .4 0 ( .1 3 3 ) 3 .1 0 ( .1 2 3 ) -A 3 .7 0 ( .1 4 5 ) 3 .2 0 ( .1 2 6 ) 4 .8 0 ( .1 8 9 ) 4 .6 0 ( .1 8 1 )
2 .8 0 ( .1 1 0 ) 2 .6 0 ( .1 0 2 ) L E A D A S S IG N M E N T S LEAD ASSIGMENTS 1-G 1- GATEA T E 2 - D R A IN 2- COLLECTOR 3 - SOUR 3- EMITTER C E
7 .1 0 ( .2 8 0 ) 6 .7 0 ( .2 6 3 )
1 6 .0 0 ( .6 3 0 ) 1 5 .8 0 ( .6 2 2 )
1 .1 5 ( .0 4 5 ) M IN . 1 2 3
NOTES : 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4.5 M , 1 9 8 2 2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 .3 0 ( .1 3 0 ) 3 .1 0 ( .1 2 2 ) -B1 3 .7 0 ( .5 4 0 ) 1 3 .5 0 ( .5 3 0 ) C D
A 1 .4 0 ( .0 5 5 ) 3X 1 .0 5 ( .0 4 2 ) 2 .5 4 ( .1 0 0 ) 2X 0 .9 0 ( .0 35 ) 3 X 0 .7 0 ( .0 28 ) 0 .2 5 ( .0 1 0 ) M AM B 3X 0 .4 8 ( .0 1 9 ) 0 .4 4 ( .0 1 7 )
B
2 .8 5 ( .1 1 2 ) 2 .6 5 ( .1 0 4 )
M IN IM U M C R E E P A G E D IS T A N C E B E T W E E N A -B -C -D = 4 .8 0 ( .1 89 )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 10/00
10
www.irf.com