PD -95636
IRG4IBC20WPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications • 2.5kV, 60s insulation voltage Industry-benchmark switching losses improve efficiency of all power supply topologies 50% reduction of Eoff parameter Low IGBT conduction losses Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability • Industry standard Isolated TO-220 FullpakTM outline Lead-Free
C
VCES = 600V
G E
VCE(on) typ. = 2.16V
@VGE = 15V, IC = 6.5A
n-channel
Benefits
Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) Of particular benefit to single-ended converters and boost PFC topologies 150W and higher Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz) Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ T C = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw.
TO-220 FULLP AK
Absolute Maximum Ratings
Max.
600 11.8 6.2 52 52 ± 20 200 34 14 -55 to + 150 300 (0.063 in. (1.6mm) from case ) 10 lbf•in (1.1N•m)
Units
V A
V mJ W
°C
Thermal Resistance
Parameter
RθJC RθJA Wt Junction-to-Case - IGBT Junction-to-Ambient, typical socket mount Weight
Typ.
––– ––– 2.0 (0.07)
Max.
3.7 65 –––
Units
°C/W g (oz)
www.irf.com
1
07/23/04
IRG4IBC20WPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES V(BR)ECS Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 — Emitter-to-Collector Breakdown Voltage 18 — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.48 — 2.16 VCE(ON) Collector-to-Emitter Saturation Voltage — 2.55 — 2.05 VGE(th) Gate Threshold Voltage 3.0 — ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -8.8 gfe Forward Transconductance
5.5 8.3 — — ICES Zero Gate Voltage Collector Current — — — — IGES Gate-to-Emitter Leakage Current — — Max. Units Conditions — V VGE = 0V, IC = 250µA — V VGE = 0V, IC = 1.0A — V/°C VGE = 0V, IC = 1.0mA 2.6 IC = 6.5A VGE = 15V — IC = 13A See Fig.2, 5 V — IC = 6.5A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100 V, IC = 6.5A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 26 38 IC = 6.5A 3.7 5.5 nC VCC = 400V See Fig.8 10 15 VGE = 15V 22 — 14 — TJ = 25°C ns 110 160 IC = 6.5A, VCC = 480V 64 96 VGE = 15V, RG = 50Ω 0.06 — Energy losses include "tail" 0.08 — mJ See Fig. 9, 10, 14 0.14 0.2 21 — TJ = 150°C, 15 — IC = 6.5A, VCC = 480V ns 150 — VGE = 15V, RG = 50Ω 150 — Energy losses include "tail" 0.34 — mJ See Fig. 10, 11, 14 7.5 — nH Measured 5mm from package 490 — VGE = 0V 38 — pF VCC = 30V See Fig. 7 8.8 — ƒ = 1.0MHz
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 50Ω,
(See fig. 13a)
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot. t = 60s, f = 60Hz
Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4IBC20WPbF
25 For both:
Triangular wave:
20
Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified
Power Dissipation = 13W Clamp voltage: 80% of rated
Load Current ( A )
15 Square wave: 60% of rated voltage 10
5 Ideal diodes
0 0.1 1 10 100
A
1000
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C , Collector-to-Emitter Current (A)
I C, Collector-to-Emitter Current (A)
TJ = 150 °C
10
10
TJ = 150 °C TJ = 25 °C V GE = 15V 20µs PULSE WIDTH
1 10
TJ = 25 °C V CC = 50V 5µs PULSE WIDTH
5 6 7 9 10 11
1
1
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4IBC20WPbF
12
3.0
8
VCE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH
IC = 13 A
Maximum DC Collector Current(A)
IC = 6.5 A
2.0
IC =3.25 A
4
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
° TC , Case Temperature ( C)
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
1
D = 0.50 0.20 0.10 0.05 P DM t1 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t2
0.1
0.02 0.01
0.01 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC20WPbF
1000
800
VGE , Gate-to-Emitter Voltage (V)
100
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 6.5A
16
C, Capacitance (pF)
600
Cies
12
400
8
200
Coes Cres
4
0 1 10
0 0 5 10 15 20 25 30
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.15
Total Switching Losses (mJ)
0.14
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 °C I C = 6.5A
10
50 Ω RG = Ohm VGE = 15V VCC = 480V
1
IC = 13 A IC = 6.5 A
0.13
0.1
IC = 3.25 A
0.12 0 10 20 30 40 50
0.01 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG , Gate Resistance (Ohm) Ω
TJ , Junction Temperature ( °C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4IBC20WPbF
0.8
0.6
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG TJ VCC VGE
= 50Ω Ohm = 150° C = 480V = 15V
100
VGE = 20V T J = 125 oC
0.4
10
0.2
SAFE OPERATING AREA
0.0 0 2 4 6 8 10 12 14
1 1 10 100 1000
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
6
www.irf.com
IRG4IBC20WPbF
L 50V 1000V VC *
0 - 480V
D.U.T.
RL =
480V 4 X I C@25°C
c
480µF 960V
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L Driver* 50V D.U.T. VC
Fig. 14a - Switching Loss
Test Circuit
* Driver same type as D.U.T., VC = 480V
Ã
1000V
d
e
c d
90%
e
VC 90%
10%
t d(off)
Fig. 14b - Switching Loss
Waveforms
10% I C 5% t d(on)
tr E on E ts = (Eon +Eoff )
tf t=5µs E off
www.irf.com
7
IRG4IBC20WPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
E XAMP L E : T H IS IS AN IR F I840G WIT H AS S E MB L Y L OT CODE 3432 AS S E MB L E D ON WW 24 1999 IN T H E AS S E MB L Y L IN E "K " P AR T NU MB E R INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE
IR F I840G 924K 34 32
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 9 = 1999 WE E K 24 L IN E K
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/04
8
www.irf.com