PD- 91751A
IRG4IBC30FD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• • • • Very Low 1.59V votage drop 2.5kV, 60s insulation voltage
4.8 mm creapage distance to heatsink Fast: Optimized for medium operating frequencies ( 1-5 kHz in hard switching, >20 kHz in resonant mode). • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes • Tighter parameter distribution • Industry standard Isolated TO-220 FullpakTM outline
C
Fast CoPack IGBT
VCES = 600V
G E
VCE(on) typ. = 1.59V
@VGE = 15V, IC = 17A
n-ch an nel
Benefits
• Simplified assembly • Highest efficiency and power density • HEXFREDTM antiparallel Diode minimizes switching losses and EMI
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM Visol VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case
Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
600 20.3 11 120 120 8.5 120 2500 ± 20 45 18 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
V
W
°C
Thermal Resistance
Parameter
RθJC RθJC RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight
Typ.
––– ––– ––– 2.0 (0.07)
Max.
2.8 4.1 65 –––
Units
°C/W g (oz)
www.irf.com
1
3/26/99
IRG4IBC30FD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES Parameter Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage Min. 600 ––– ––– ––– ––– Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance 6.1 Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.69 1.59 1.99 1.70 ––– -11 10 ––– ––– 1.4 1.3 ––– Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, I C = 1.0mA 1.8 IC = 17A VGE = 15V ––– V IC = 31A See Fig. 2, 5 ––– IC = 17A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 250µA ––– S VCE = 100V, IC = 17A 250 µA VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 12A See Fig. 13 1.6 IC = 12A, TJ = 150°C ±100 nA VGE = ±20V
VGE(th)
∆VGE(th)/∆TJ
gfe ICES VFM IGES
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres t rr I rr Q rr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Diode Peak Reverse Recovery Current ––– ––– Diode Reverse Recovery Charge ––– ––– Diode Peak Rate of Fall of Recovery ––– During tb ––– Typ. 51 7.9 19 42 26 230 160 0.63 1.39 2.02 42 27 310 310 3.2 7.5 1100 74 14 42 80 3.5 5.6 80 220 180 120 Max. Units Conditions 77 IC = 17A 12 nC VCC = 400V See Fig. 8 28 VGE = 15V ––– TJ = 25°C ––– ns IC = 17A, VCC = 480V 350 VGE = 15V, RG = 23Ω 230 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ See Fig. 9, 10, 11, 18 3.9 ––– TJ = 150°C, See Fig. 9, 10, 11, 18 ––– ns IC = 17A, VCC = 480V ––– VGE = 15V, RG = 23Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 12A 6.0 A TJ = 25°C See Fig. 10 TJ = 125°C 15 VR = 200V 180 nC TJ = 25°C See Fig. 600 TJ = 125°C 16 di/dt 200A/µs ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17
2
www.irf.com
IRG4IBC30FD
16
F o r b o th :
LOAD CURRENT (A)
12
D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d P o w e r D is s ip a tio n = 13 W
S q u a re w a v e :
8
6 0% of rate d volta ge
I
4
Id e a l d io d e s
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I RMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
100
TJ = 25°C
I C , Collector-to-Emitter Current (A)
100
T J = 150°C
TJ = 150°C T J = 25°C
10
10
1 1
V G E = 15V 20µs PULSE WIDTH
10
A
1 5 6 7 8 9
V C C = 50V 5µs PULSE WIDTH A
10 11 12 13
VC E , Collector-to-Emitter Volta g e (V)
VG E , Gate-to-Emitter Volta g e (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4IBC30FD
25
2.5
V G E = 1 5V 80µs PULSE WIDTH I C = 34A
Maximum DC Collector Current(A)
20
V C E , Collector-to-Emitter Voltage (V)
15
2.0
10
I C = 17A
1.5
5
I C = 8.5A
0 25 50 75 100 125 150
1.0 -60 -40 -20 0 20 40 60 80
A
100 120 140 160
TC , Case Temperature ( ° C)
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 P DM t1 t2
0.01 0.00001
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC30FD
2000 VGE = 0V f = 1 MHz 20
1600
Coes = Cce + Cgc
V G E , Gate-to-Emitter Voltage (V)
A
Cies = Cge + Cgc + Cce Cres = Cce
SHORTED
VC E = 4 00V I C = 17A
16
C, Capacitance (pF)
1200
C i es
12
800
8
C o es
400
4
C r es
0 1 10
0 0 10 20 30 40 50
A
60
100
V C E , Collector-to-Emitter Volta g e (V)
Q g , Total Gate Char g e (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
2.20
Total Switchig Losses (mJ)
2.10
Total Switchig Losses (mJ)
VC C VG E TJ IC
= 4 80V = 15V = 25°C = 17A
10
I C = 34A
I C = 17A
1
2.00
I C = 8.5A
1.90
1.80 0 20 40 60
A
80
0.1
R G = 23 Ω V G E = 1 5V V C C = 480V
-60 -40 -20 0 20 40 60 80 100 120 140
A 160
R G, Gate Resistance (
Ω)
TJ , Junction Temperature (°C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4IBC30FD
8.0 6.0
I C , C ollecto r-to -Em itter Cu rrent (A)
Total Switchig Losses (mJ)
RG TJ V CC V GE
= = = =
23 Ω 1 50°C 480V 15V
1000
VG E E 2 0V G= T J = 12 5 °C
100
S A FE O P E R A TIN G A R E A
4.0
10
2.0
0.0 0 10 20 30 40
A
1 1 10 100 1000
I C , Collector-to-Emitter Current (A)
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
In s ta n ta n e o u s F o rw a rd C u rre n t - I F (A )
TJ = 1 50 °C
10
TJ = 1 25 °C TJ = 25 °C
1 0.4 0.8 1.2 1.6 2.0 2.4
F o rw a rd V o lta g e D ro p - V F M ( V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC30FD
160 100
VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C
120
VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C
I F = 24 A I F = 1 2A
80
I IR R M - (A )
I F = 24 A
10
t rr - (ns)
I F = 12 A I F = 6.0 A
I F = 6 .0 A
40
0 100
d i f /d t - ( A / µ s )
1000
1 100
1000
d i f /d t - ( A / µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
600
10000
VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C
VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C
400
d i(re c )M /d t - (A /µ s)
1000
Q R R - (n C )
IF = 6.0 A
I F = 2 4A I F = 1 2A
I F = 12 A
100
200
I F = 6.0 A
I F = 2 4A
0 100
d i f /d t - ( A / µ s )
1000
10 100
1000
d i f /d t - ( A / µ s )
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4IBC30FD
Same ty pe device as D .U.T.
90%
80% of Vce
430µF D .U .T.
Vge
VC
10% 90%
t d(off)
10% IC 5%
t d(on)
tr
tf t=5µs Eon E ts = (Eon +Eoff ) Eoff
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
∫
trr id d t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 E o n = V ce ie d t t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
∫
E re c =
∫
t4 V d id d t t3
t1
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4IBC30FD
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µ F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4IBC30FD
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
t = 60s, f = 60Hz
Notes:
Case Outline TO-220 FULLPAK
1 0 .6 0 (.4 1 7 ) 1 0 .4 0 (.4 0 9 ) ø 3 .4 0 (.1 3 3 ) 3 .1 0 (.1 2 3 ) -A3 .7 0 (.1 4 5 ) 3 .2 0 (.1 2 6 ) 4 .8 0 (.1 8 9 ) 4 .6 0 (.1 8 1 )
2 .8 0 (.1 10 ) 2 .6 0 (.1 02 ) L E A D A S S IG N M E N T S LEAD ASSIGMENTS 1-G 1- GATE A T E 2 - D R A IN 2- COLLECTOR 3 - S OU 3- EMITTERR C E
7 .10 (.2 8 0 ) 6 .70 (.2 6 3 )
1 6 .0 0 (.6 3 0 ) 1 5 .8 0 (.6 2 2 )
1 .1 5 (.0 4 5 ) M IN . 1 2 3
NOTES: 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 .3 0 (.1 3 0 ) 3 .1 0 (.1 2 2 ) -B1 3 .7 0 (.5 4 0 ) 1 3 .5 0 (.5 3 0 ) C D
A 1 .4 0 (.0 5 5 ) 3X 1 .0 5 (.0 4 2 ) 2 .5 4 (.1 0 0 ) 2X 0 .9 0 (.0 3 5 ) 3 X 0 .7 0 (.0 2 8 ) 0 .2 5 (.0 1 0) M AM B 3X 0 .4 8 (.0 1 9 ) 0 .4 4 (.0 1 7 )
B
2 .8 5 (.1 1 2 ) 2 .6 5 (.1 0 4 )
M IN IM U M C R E E P A G E D IS T A N C E B E T W E E N A -B -C -D = 4 .8 0 (.1 89 )
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 3/99
10
www.irf.com