PD -91690A
IRG4IBC30KD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• High switching speed optimized for up to 25kHz with low VCE(on) • Short Circuit Rating 10µs @ 125°C, VGE = 15V • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-220 FULLPAK
C
Short Circuit Rated UltraFast IGBT
VCES = 600V
G E
VCE(on) typ. = 2.21V
@VGE = 15V, IC = 9.2A
n-ch an nel
Benefits
• Generation 4 IGBTs offer highest efficiencies available maximizing the power density of the system • IGBT's optimized for specific application conditions • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise EMI • Designed to exceed the power handling capability of equivalent industry-standard IGBT
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VISOL VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q U Clamped Inductive Load Current R U Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
600 17 9.2 34 34 9.2 34 10 2500 ± 20 45 18 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
µs V W
°C
Thermal Resistance
Parameter
RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight
Typ.
––– ––– ––– 2.0 (0.07)
Max.
2.8 3.7 65 –––
Units
°C/W g (oz)
www.irf.com
1
4/24/2000
IRG4IBC30KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES
Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown VoltageS 600 — — V Temperature Coeff. of Breakdown Voltage — 0.54 — V/°C Collector-to-Emitter Saturation Voltage — 2.21 2.7 — 2.88 — V — 2.36 — Gate Threshold Voltage 3.0 — 6.0 Temperature Coeff. of Threshold Voltage — -12 — mV/°C Forward Transconductance T 5.4 8.1 — S Zero Gate Voltage Collector Current — — 250 µA — — 2500 Diode Forward Voltage Drop — 1.4 1.7 V — 1.3 1.6 Gate-to-Emitter Leakage Current — — ±100 nA
Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 16A VGE = 15V See Fig. 2, 5 IC = 28A IC = 16A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 16A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 12A See Fig. 13 IC = 12A, TJ = 150°C VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 67 100 IC = 16A 11 16 nC VCC = 400V See Fig.8 25 37 VGE = 15V 60 — 42 — TJ = 25°C ns 160 250 IC = 16A, VCC = 480V 80 120 VGE = 15V, RG = 23Ω 0.60 — Energy losses include "tail" 0.58 — mJ and diode reverse recovery 1.18 1.6 See Fig. 9,10,14 — — µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 10Ω , VCPK < 500V 58 — TJ = 150°C, See Fig. 10,11,18 42 — IC = 16A, VCC = 480V ns 210 — VGE = 15V, RG = 23Ω 160 — Energy losses include "tail" 1.69 — mJ and diode reverse recovery 7.5 — nH Measured 5mm from package 920 — VGE = 0V 110 — pF VCC = 30V See Fig. 7 27 — ƒ = 1.0MHz 42 60 ns TJ = 25°C See Fig. 80 120 TJ = 125°C 14 IF = 12A 3.5 6.0 A TJ = 25°C See Fig. 5.6 10 TJ = 125°C 15 VR = 200V 80 180 nC TJ = 25°C See Fig. 220 600 TJ = 125°C 16 di/dt = 200Aµs 180 — A/µs TJ = 25°C See Fig. 160 — TJ = 125°C 17
2
www.irf.com
IRG4IBC30KD
12
For both:
10
LOAD CURRENT (A)
D uty cy cle: 50% TJ = 125 ° C T s ink = 90 ° C G ate drive as specified
P ow e r Dis sip ation = 13 W S q u a re w a v e :
8
6
6 0% of rate d volta ge
I
4
2
Id e a l d io d e s
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
TJ = 150 o C
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 25 o C
TJ = 150 o C
10
10
TJ = 25 oC
1
1
0.1 1
V = 15V 20µs PULSE WIDTH
GE 10
0.1 5 10
V = 50V 5µs PULSE WIDTH
CC 15
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4IBC30KD
20 4.0
Maximum DC Collector Current(A)
15
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
I C = 32 A
3.0
10
I C = 16 A
2.0
I C = 8.0A 8A
5
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( °C)
, Junction Temperature C C) TTJ Junction Temperature ( °( °) J,
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01
SINGLE PULSE (THERMAL RESPONSE) 0.0001 0.001 0.01
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.1 1
P DM t1 t2 10
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC30KD
1500
1200
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 16A
16
C, Capacitance (pF)
900
Cies
12
600
8
300
C oes C res
4
0 1 10 100
0 0 20 40 60 80
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
1.50
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 ° C 1.40 I C = 16A
10
RG = Ohm 23Ω VGE = 15V VCC = 480V
IC = 32 A
IC = 16 A
1
1.30
IC = 8.0A 8A
1.20
1.10
1.00 0
R Gate Resistance Ω ) RG G, ,Gate Resistance ((Ohm)
10
20
30
40
50
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4IBC30KD
5.0
Total Switching Losses (mJ)
3.0
I C , Collector Current (A)
RG TJ VCC 4.0 VGE
= 23Ω Ohm = 150 ° C = 480V = 15V
100
VGE = 20V T J = 125 o C
10
2.0
1.0
0.0 0 8 16 24 32
SAFE OPERATING AREA
1 40 1 10 100 1000
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Insta ntane ous Forward C urrent - I F (A )
TJ = 15 0 ° C
10
TJ = 12 5 ° C TJ = 2 5 ° C
1 0.4 0.8 1.2 1.6 2.0 2.4
F o rwa rd V olta g e D rop - V F M ( V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC30KD
160 100
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
120
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
I F = 24 A I F = 1 2A
80
I IR R M - (A )
I F = 2 4A
10
t rr - (ns)
I F = 1 2A I F = 6 .0A
I F = 6 .0 A
40
0 100
d i f /d t - ( A / µ s )
1000
1 100
1000
di f /dt - ( A / µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
600
10000
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
400
d i(re c )M /d t - (A /µ s)
1000
Q R R - (n C )
IF = 6.0 A
I F = 24 A I F = 12 A
I F = 12 A
100
200
I F = 6.0 A
I F = 2 4A
0 100
d i f /dt - ( A / µ s )
1000
10 100
1000
d i f /d t - ( A / µ s )
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4IBC30KD
Same ty pe device as D .U.T. 90% Vge +Vge
V ce 80% of Vce 430µF D .U .T. Ic 10% Vce Ic 5 % Ic td (o ff) tf 9 0 % Ic
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
E o ff =
∫
t1 + 5 µ S V c e Ic Vceic d tdt t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
∫
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
∫
E re c =
∫
t4 V d idIc t dt Vc d t3
t1
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4IBC30KD
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µ F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4IBC30KD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 23Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. U Uses IRG4BC30KD data and test conditions
Case Outline — TO-220 FULLPAK
1 0 .6 0 ( .4 1 7 ) 1 0 .4 0 ( .4 0 9 ) ø 3 .4 0 ( .1 3 3 ) 3 .1 0 ( .1 2 3 ) -A 3 .7 0 ( .1 4 5 ) 3 .2 0 ( .1 2 6 ) 4 .8 0 ( .1 8 9 ) 4 .6 0 ( .1 8 1 )
2 .8 0 ( .1 1 0 ) 2 .6 0 ( .1 0 2 ) L E A A S S IG N M E N LEAD DASSIGMENTS T S 1-G 1- GATE A T E 2 - D R A IN 2- COLLECTOR 3- EMITTER R C E 3 - SOU
7 .1 0 ( .2 8 0 ) 6 .7 0 ( .2 6 3 )
1 6 .0 0 ( .6 3 0 ) 1 5 .8 0 ( .6 2 2 )
1 .1 5 ( .0 4 5 ) M IN . 1 2 3
NOTES : 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4.5 M , 1 9 8 2 2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 .3 0 ( .1 3 0 ) 3 .1 0 ( .1 2 2 ) -B1 3 .7 0 ( .5 4 0 ) 1 3 .5 0 ( .5 3 0 ) C D
A 1 .4 0 ( .0 5 5 ) 3X 1 .0 5 ( .0 4 2 ) 2 .5 4 ( .1 0 0 ) 2X 0 .9 0 ( .0 35 ) 3 X 0 .7 0 ( .0 28 ) 0 .2 5 ( .0 1 0 ) M AM B 3X 0 .4 8 ( .0 1 9 ) 0 .4 4 ( .0 1 7 )
B
2 .8 5 ( .1 1 2 ) 2 .6 5 ( .1 0 4 )
M IN IM U M C R E E P A G E D IS T A N C E B E T W E E N A -B -C -D = 4 .8 0 ( .1 89 )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 10/00
10
www.irf.com