PD91753A
IRG4IBC30UD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• 2.5kV, 60s insulation voltage U • 4.8 mm creapage distance to heatsink • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes • Tighter parameter distribution • Industry standard Isolated TO-220 FullpakTM outline
C
UltraFast CoPack IGBT
VCES = 600V
G E
VCE(on) typ. = 1.95V
@VGE = 15V, IC = 12A
n-cha nn el
Benefits
• Simplified assembly • Highest efficiency and power density • HEXFREDTM antiparallel Diode minimizes switching losses and EMI
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM Visol VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector CurrentQ Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to CaseU Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
600 17 8.9 92 92 8.5 92 2500 ± 20 45 18 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
V W
°C
Thermal Resistance
Parameter
RθJC RθJC RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight
Typ.
––– ––– ––– 2.0 (0.07)
Max.
2.8 4.1 65 –––
Units
°C/W g (oz)
www.irf.com
1
7/17/2000
IRG4IBC30UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Collector-to-Emitter Breakdown Voltageƒ ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage V(BR)CES Min. 600 ––– ––– ––– ––– Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage ––– Forward TransconductanceT 3.1 Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.63 1.95 2.52 2.09 ––– -11 8.6 ––– ––– 1.4 1.3 ––– Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, IC = 1.0mA 2.1 IC = 12A VGE = 15V ––– V IC = 23A See Fig. 2, 5 ––– IC = 12A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 250µA ––– S VCE = 100V, IC = 12A 250 µA VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 12A See Fig. 13 1.6 IC = 12A, TJ = 150°C ±100 nA VGE = ±20V
VGE(th)
∆VGE(th)/∆TJ
gfe ICES VFM IGES
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M /dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 50 8.1 18 40 21 91 80 0.38 0.16 0.54 40 22 120 180 0.89 7.5 1100 73 14 42 80 3.5 5.6 80 220 180 120 Max. Units Conditions 75 IC = 12A 12 nC VCC = 400V See Fig. 8 27 VGE = 15V ––– TJ = 25°C ––– ns IC = 12A, VCC = 480V 140 VGE = 15V, RG = 23Ω 130 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ See Fig. 9, 10, 11, 18 0.9 ––– TJ = 150°C, See Fig. 9, 10, 11, 18 ––– ns IC = 12A, VCC = 480V ––– VGE = 15V, RG = 23Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 12A 6.0 A TJ = 25°C See Fig. 10 TJ = 125°C 15 VR = 200V 180 nC TJ = 25°C See Fig. 600 TJ = 125°C 16 di/dt 200A/µs ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17
2
www.irf.com
IRG4IBC30UD
12
F o r b o th :
10
LOAD CURRENT (A)
D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d
P o w e r D is s ip a tio n = 13 W
8
S q u a re w a v e :
6
6 0% of rate d volta ge
I
4
Id e a l d io d e s
2
0 0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C , C olle cto r-to -E m itte r C u rre n t (A )
TJ = 2 5 ° C TJ = 1 5 0 °C
10
I C , C o lle cto r-to -E m itte r C u rre n t (A )
TJ = 1 5 0 °C
10
TJ = 2 5 ° C
1
1
0.1 0.1 1
VG E = 1 5 V 2 0 µ s P U L S E W ID T H A
10
0.1 5 6 7 8
V CC = 10V 5 µ s P U L S E W ID T H
9 10 11
A
12
V C E , C o lle cto r-to -E m itte r V o lta g e (V )
VG E , G a te -to -E m itte r V o lta g e (V )
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4IBC30UD
20
3.0
V C E , C ollector-to-Em itter Volta ge (V)
VGE = 15V 8 0 µ s P U L S E W ID T H
IC = 2 4 A
Maximum DC Collector Current(A)
16
2.5
12
8
IC = 1 2 A
2.0
4
I C = 6 .0 A
A
-60 -40 -20 0 20 40 60 80 100 120 140 160
0 25 50 75 100 125 150
1.5
TC , Case Temperature ( ° C)
T J , Ju n c tio n T e m p e ra tu re ( ° C )
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01
SINGLE PULSE (THERMAL RESPONSE) 0.0001 0.001 0.01
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.1 1
P DM t1 t2 10
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC30UD
2000
V G E , G a te -to -E m itte r V o lta g e (V )
A
C, C apa cita nc e (pF )
1600
V GE = C ie s = C re s = C oes =
0V , f = 1MHz C g e + C g c , C ce S H O R TE D C gc C ce + C g c
20
VCE = 400V IC = 12A
16
C ie s
1200
12
800
C oes
8
400
C re s
4
0 1 10
0 0 10 20 30 40
A
50
100
V C E , C o lle c to r-to -E m itte r V o lta g e (V )
Q g , T o ta l G a te C h a r g e (n C )
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.60
10
Total Switchig Losses (mJ)
0.58
Total Switchig Losses (mJ)
V C C = 4 80V V G E = 15V T J = 25 ° C I C = 12A
R G = 23Ω V G E = 1 5V V C C = 480V
I C = 24A
0.56
1
I C = 12A
0.54
I C = 6.0A
0.52
0.50 0 10 20 30 40 50
A
60
0.1 -60 -40 -20 0 20 40 60 80 100 120 140
A 160
R G , Gate Resistance ( Ω)
TJ , Junction Temperature ( ° C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4IBC30UD
2.0
Total Switchig Losses (mJ)
1.6
1.2
I C , Collector Current (A)
A
RG TJ V CC V GE
= 23 Ω = 1 50 ° C = 480V = 15V
1000
VGE = 20V T J = 125 oC
100
10
0.8
1
0.4
SAFE OPERATING AREA
0.0 0 10 20 30
0.1
1
10
100
1000
I C , Collector-to-Emitter Current (A )
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instan tan eou s Fo rwa rd C urre nt - I F (A )
TJ = 15 0 ° C
10
TJ = 12 5 ° C TJ = 2 5 ° C
1 0.4 0.8 1.2 1.6 2.0 2.4
F o rwa rd V olta g e D rop - V FM ( V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC30UD
160 100
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
120
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
I F = 24 A I F = 1 2A
80
I IR R M - (A )
I F = 2 4A
10
t rr - (ns)
I F = 1 2A I F = 6 .0A
I F = 6 .0 A
40
0 100
d i f /d t - ( A / µ s )
1000
1 100
1000
di f /dt - ( A / µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
600
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
VR = 2 0 0 V TJ = 1 2 5 °C TJ = 2 5 ° C
400
d i(re c )M /d t - (A /µ s)
1000
Q R R - (n C )
IF = 6.0 A
I F = 2 4A I F = 1 2A
I F = 12 A
100
200
I F = 6.0 A
I F = 2 4A
0 100
d i f /d t - ( A / µ s )
1000
10 100
1000
d i f /d t - ( A / µ s )
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4IBC30UD
Same ty pe device as D .U.T.
90%
80% of Vce
430µF D .U .T.
Vge VC 90%
10%
td(off)
10% IC 5% t d(on)
tr Eon E ts = (Eon +Eoff )
tf t=5µs Eoff
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
∫
trr id d t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 E o n = V ce ie d t t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
∫
E re c =
t1
∫
t4 V d id d t t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4IBC30UD
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µ F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4IBC30UD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. U t = 60s, f = 60Hz
Case Outline TO-220 FULLPAK
1 0 .6 0 ( .4 1 7 ) 1 0 .4 0 ( .4 0 9 ) ø 3 .4 0 ( .1 3 3 ) 3 .1 0 ( .1 2 3 ) -A 3 .7 0 ( .1 4 5 ) 3 .2 0 ( .1 2 6 ) 4 .8 0 ( .1 8 9 ) 4 .6 0 ( .1 8 1 )
2 .8 0 ( .1 1 0 ) 2 .6 0 ( .1 0 2 ) L E A D A S S IG N M E N T S LEAD ASSIGMENTS 1-G 1- GATEA T E 2 - D R A IN 2- COLLECTOR 3 - SOUR 3- EMITTER C E
7 .1 0 ( .2 8 0 ) 6 .7 0 ( .2 6 3 )
1 6 .0 0 ( .6 3 0 ) 1 5 .8 0 ( .6 2 2 )
1 .1 5 ( .0 4 5 ) M IN . 1 2 3
NOTES : 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4.5 M , 1 9 8 2 2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 .3 0 ( .1 3 0 ) 3 .1 0 ( .1 2 2 ) -B1 3 .7 0 ( .5 4 0 ) 1 3 .5 0 ( .5 3 0 ) C D
A 1 .4 0 ( .0 5 5 ) 3X 1 .0 5 ( .0 4 2 ) 2 .5 4 ( .1 0 0 ) 2X 0 .9 0 ( .0 35 ) 3 X 0 .7 0 ( .0 28 ) 0 .2 5 ( .0 1 0 ) M AM B 3X 0 .4 8 ( .0 1 9 ) 0 .4 4 ( .0 1 7 )
B
2 .8 5 ( .1 1 2 ) 2 .6 5 ( .1 0 4 )
M IN IM U M C R E E P A G E D IS T A N C E B E T W E E N A -B -C -D = 4 .8 0 ( .1 89 )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 7/00
10
www.irf.com