PD - 95326
IRG4IBC30WPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
Benefits
Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications • 2.5kV, 60s insulation voltage Industry-benchmark switching losses improve efficiency of all power supply topologies 50% reduction of Eoff parameter Low IGBT conduction losses Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability • Industry standard Isolated TO-220 FullpakTM outline • Lead-Free
C
VCES = 600V
G E
VCE(on) typ. = 2.1V
@VGE = 15V, IC = 12 A
n-channel
Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) Of particular benefit to single-ended converters and boost PFC topologies 150W and higher Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz)
TO-220 FULLP AK
Absolute Maximum Ratings
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG
Parameter
Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw.
Max.
600 17 8.4 92 92 ± 20 180 45 18 -55 to + 150 300 (0.063 in. (1.6mm from case ) 10 lbf•in (1.1N•m)
Units
V A
V mJ W
°C
Thermal Resistance
Parameter
RθJC RθJA Wt Junction-to-Case - IGBT Junction-to-Ambient, typical socket mount Weight
Typ.
––– ––– 2.0 (0.07)
Max.
2.8 65 –––
Units
°C/W g (oz)
www.irf.com
1
6/1/04
IRG4IBC30WPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES V(BR)ECS Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 — Emitter-to-Collector Breakdown Voltage 18 — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.34 — 2.1 Collector-to-Emitter Saturation Voltage — 2.45 VCE(ON) — 1.95 VGE(th) Gate Threshold Voltage 3.0 — ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -11 gfe Forward Transconductance
11 16 — — ICES Zero Gate Voltage Collector Current — — — — IGES Gate-to-Emitter Leakage Current — — Max. Units Conditions — V VGE = 0V, IC = 250µA — V VGE = 0V, IC = 1.0A — V/°C VGE = 0V, IC = 1.0mA 2.7 IC = 12A VGE = 15V — IC = 23A See Fig.2, 5 V — IC = 12A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100 V, IC = 12A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. 51 7.6 18 25 16 99 67 0.13 0.13 0.26 24 17 150 150 0.55 7.5 980 71 18 Max. Units Conditions 76 IC = 12A 11 nC VCC = 400V See Fig.8 27 VGE = 15V — — TJ = 25°C ns 150 IC = 12A, VCC = 480V 100 VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 9, 10, 13, 14 0.35 — TJ = 150°C, — IC = 12A, VCC = 480V ns — VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 11,13, 14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω,
(See fig. 13a)
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot. t = 60s, f = 60Hz
Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4IBC30WPbF
25
For both:
Triangular wave:
20
Load Current (A)
Duty cycle: 50% TJ = 125°C Tsink 90°C = Gate drive as specified Power Dissipation = 10.6W
Clamp voltage: 80% of rated
15
Square wave: 60% of rated voltage
10
5 Ideal diodes
0 0.1 1 10 100
A
1000
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
100
100
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 150 °C
10
TJ = 150 °C
10
TJ = 25 °C
TJ = 25 °C
1
1
VGE = 15V 20µs PULSE WIDTH
1 10
0.1 5.0
V CC = 50V 5µs PULSE WIDTH
6.0 7.0 8.0 9.0 10.0 11.0
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4IBC30WPbF
20
3.0
VCE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH IC = 24 A
Maximum DC Collector Current(A)
15
2.5
10
IC = 12 A
2.0
IC =
6A
5
0
25
50
75
100
125
150
1.5 -60 -40 -20
0
20 40
60
80 100 120 140 160
TC , Case Temperature ( ° C)
TJ , Junction Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Temperature
Case
Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 PDM t1 t2
0.01 0.00001
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC30WPbF
2000
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 12A
16
C, Capacitance (pF)
1500
Cies
1000
12
8
500
Coes Cres
4
0
0
1
10
100
0
10
20
30
40
50
60
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.5
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC = 480V VGE = 15V TJ = 25 ° C 0.4 I C = 12A
10
23Ω RG = Ohm VGE = 15V VCC = 480V
IC = 24 A
1
0.3
IC = 12 A IC =
0.1 6A
0.2
0.1
10
0.0
0
10
20
30
40
50
0.01 -60 -40 -20
0
20
40
60
80 100 120 140 160
RGR, Gate Resistance (Ohm) G, Gate Resistance (Ω)
TJ , Junction Temperature ( °C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4IBC30WPbF
1.5
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG TJ VCC VGE
23Ω = Ohm = 150 °C = 480V = 15V
1000
VGE = 20V GE TJ = 125°C
100
1.0
SAFE OPERATING AREA
10
0.5
1
0.0
0.1
0
5
10
15
20
25
30
1
10
100
1000
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
6
www.irf.com
IRG4IBC30WPbF
L 50V 1000V VC *
D.U.T.
RL = 0 - 480V
480V 4 X IC@ 25°C
c
480µF 960V
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L Driver* 50V 1000V VC D.U.T.
Fig. 14a - Switching Loss
Test Circuit
* Driver same type as D.U.T., VC = 480V
Ã
d
e
c d
90%
e
VC 90%
10%
t d(off)
Fig. 14b - Switching Loss
Waveforms
10% I C 5% t d(on)
tr E on E ts = (Eon +Eoff )
tf t=5µs E off
www.irf.com
7
IRG4IBC30WPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
E X AM P L E : T H IS IS AN IR F I8 4 0 G W IT H AS S E M B L Y L OT CODE 3 432 AS S E M B L E D O N W W 2 4 1 9 9 9 IN T H E AS S E M B L Y L IN E "K " IN T E R N AT IO N AL R E CT IF IE R L OGO AS S E M B L Y L OT CODE P AR T N U M B E R
IR F I8 40 G 924 K 34 32
Note: "P" in assembly line position indicates "Lead-Free"
D AT E C O D E Y E AR 9 = 1 9 9 9 WE E K 24 L IN E K
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 06/04
8
www.irf.com