PD - 96168
IRG4PC50F-EPbF
INSULATED GATE BIPOLAR TRANSISTOR Features
Optimized for medium operating frequencies ( 1-5 kHz in hard switching, >20 kHz in resonant mode). Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 Industry standard TO-247AD package Lead-Free
C
Fast Speed IGBT
VCES = 600V
G E
VCE(on) typ. = 1.45V
@VGE = 15V, IC = 39A
n-channel
Benefits
Generation 4 IGBT's offer highest efficiency available IGBT's optimized for specified application conditions Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBT's
TO-247AD
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw.
Max.
600 70 39 280 280 ± 20 20 200 78 -55 to + 150 300 (0.063 in. (1.6mm from case ) 10 lbfin (1.1Nm)
Units
V A
V mJ W °C
Thermal Resistance
Parameter
RθJC RθCS RθJA Wt Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight
Typ.
0.24 6 (0.21)
Max.
0.64 40
Units
°C/W g (oz)
www.irf.com
1
08/06/08
IRG4PC50F-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 Emitter-to-Collector Breakdown Voltage 18 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage 0.62 1.45 VCE(ON) Collector-to-Emitter Saturation Voltage 1.79 1.53 VGE(th) Gate Threshold Voltage 3.0 ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage -14 gfe Forward Transconductance
21 30 ICES Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS Max. Units Conditions V VGE = 0V, IC = 250µA V VGE = 0V, IC = 1.0A V/°C VGE = 0V, IC = 1.0mA VGE = 15V 1.6 IC = 39A IC = 70A See Fig.2, 5 V IC = 39A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 39A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 2000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 n A VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. 190 28 65 31 25 240 130 0.37 2.1 2.47 28 24 390 230 5.0 13 4100 250 49 Max. Units Conditions 290 IC = 39A 42 nC VCC = 400V See Fig. 8 97 VGE = 15V TJ = 25°C ns 350 IC = 39A, VCC = 480V 190 VGE = 15V, RG = 5.0Ω Energy losses include "tail" mJ See Fig. 10, 11, 13, 14 3.0 TJ = 150°C, IC = 39A, VCC = 480V ns VGE = 15V, RG = 5.0Ω Energy losses include "tail" mJ See Fig. 13, 14 nH Measured 5mm from package VGE = 0V pF VCC = 30V See Fig. 7 = 1.0MHz
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0Ω,
(See fig. 13a)
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4PC50F-EPbF
100
For both:
Triangular wave:
80
Load Current (A)
Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 40W
Clamp voltage: 80% of rated
60
Square wave: 60% of rated voltage
40
20
Ideal diodes
0 0.1 1 10
A
100
f, Frequency (kHz)
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
Fig. 1 - Typical Load Current vs. Frequency
IC , Collector-to-Emitter Current (A)
1000
1000
100
IC , Collector-to-Emitter Current (A)
100
TJ = 150°C TJ = 25°C
10
10
TJ = 150°C TJ = 25°C
1 0.1
VGE = 15V 20µs PULSE WIDTHA
1 10
1 5 6 7 8 9
VCC = 50V 5µs PULSE WIDTH A
10 11 12
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics www.irf.com
Fig. 3 - Typical Transfer Characteristics 3
IRG4PC50F-EPbF
70
Maximum DC Collector Current (A)
60
VCE , Collector-to-Emitter Voltage (V)
VGE = 15V
2.5
V GE = 15V 80µs PULSE WIDTH I C = 78A
50
2.0
40
30
IC = 39A
1.5
20
10
I C = 20A
A
-60 -40 -20 0 20 40 60 80 100 120 140 160
0 25 50 75 100 125 150
1.0
TC , Case Temperature (°C)
TJ , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature
1
Thermal Response (Z thJC )
D = 0.50
0.20
0.1
0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
P DM
t 1 t2
Notes: 1. Duty factor D = t / t 12 2. Peak TJ = PDM x Z thJC + TC
0.01 0.00001
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com
IRG4PC50F-EPbF
8000 VGE = 0V f = 1 MHz Cies = Cge + Cgc + Cce Cres = Cce Coes = Cce + Cgc
20
VGE , Gate-to-Emitter Voltage (V)
A
SHORTED
VCE = 400V I C = 39A
16
C, Capacitance (pF)
6000
Cies
4000
12
Coes
2000
8
Cres
4
0 1 10
100
0 0 40 80 120 160
A
200
VCE, Collector-to-Emitter Voltage (V)
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
3.8
3.6
3.4
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC VGE TJ IC
= 480V = 15V = 25°C = 39A
100
RG = 5.0 Ω VGE = 15V VCC = 480V
10
3.2
IC = 78A IC = 39A
3.0
2.8
1
IC = 20A
2.6
2.4 0 10 20 30 40 50
A
60
0.1 -60 -40 -20 0 20 40 60 80
A 100 120 140 160
R G , Gate Resistance
( Ω)
TJ , Junction Temperature (°C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com
Fig. 10 - Typical Switching Losses vs. Junction Temperature 5
IRG4PC50F-EPbF
12
Total Switching Losses (mJ)
10
I C , Collector-to-Emitter Current (A)
RG TJ VCC VGE
= 5.0 Ω = 150°C = 480V = 15V
1000
VGE = 20V GE TJ = 125°C
SAFE OPERATING AREA
100
8
6
4
10
2
0 0 20 40 60
A 80
1 1 10 100 1000
I C , Collector-to-Emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
6
www.irf.com
IRG4PC50F-EPbF
L 50V 1000V VC *
D.U.T.
RL = 0 - 480V
480V 4 X IC@ 25°C
c
480µF 960V
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L Driver* 50V 1000V VC D.U.T.
Fig. 14a - Switching Loss
Test Circuit
* Driver same type as D.U.T., VC = 480V
Ã
d
e
c d
90%
e
VC 90%
10%
t d(off)
Fig. 14b - Switching Loss
Waveforms
10% I C 5% t d(on)
tr E on E ts = (Eon +Eoff )
tf t=5µs E off
www.irf.com
7
IRG4PC50F-EPbF
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSBQ"7 !F9@ XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
Ã"$C $%ÃÃÃÃÃÃÃÃÃÃÃ$&
96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ"$ GDI@ÃC
TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice.08/2008
8
www.irf.com