PD - 91710
IRG4PF50W
INSULATED GATE BIPOLAR TRANSISTOR
Features
• Optimized for use in Welding and Switch-Mode Power Supply applications • Industry benchmark switching losses improve efficiency of all power supply topologies • 50% reduction of Eoff parameter • Low IGBT conduction losses • Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability
C
VCES = 900V
G E
VCE(on) typ. = 2.25V
@VGE = 15V, IC = 28A
n-channel
Benefits
• Lower switching losses allow more cost-effective operation and hence efficient replacement of largerdie MOSFETs up to 100kHz • Of particular benefit in single-ended converters and Power Supplies 150W and higher • Reduction in critical Eoff parameter due to minimal minority-carrier recombination coupled with low onstate losses allow maximum flexibility in device application
TO-247AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds
Max.
900 51 28 204 204 ± 20 186 200 78 -55 to + 150 300 (0.063 in. (1.6mm from case )
Units
V A
V mJ W
°C
Thermal Resistance
Parameter
RθJC RθCS RθJA Wt Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight
Typ.
––– 0.24 ––– 6 (0.21)
Max.
0.64 ––– 40 –––
Units
°C/W g (oz)
www.irf.com
1
4/15/98
IRG4PF50W
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES V(BR)ECS Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 900 ––– Emitter-to-Collector Breakdown Voltage 18 ––– ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ––– 0.295 ––– 2.25 VCE(ON) Collector-to-Emitter Saturation Voltage ––– 2.74 ––– 2.12 VGE(th) Gate Threshold Voltage 3.0 ––– ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ––– -13 gfe Forward Transconductance 26 39 ––– ––– ICES Zero Gate Voltage Collector Current ––– ––– ––– ––– IGES Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V VGE = 0V, IC = 1.0A ––– V/°C VGE = 0V, IC = 3.5mA 2.7 IC = 28A VGE = 15V ––– IC = 60A See Fig.2, 5 V ––– IC = 28A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA ––– S VCE ≥ 15V, IC = 28A 500 VGE = 0V, VCE = 900V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 5.0 mA VGE = 0V, VCE = 900V, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 160 19 53 29 26 110 150 0.19 1.06 1.25 28 26 280 90 3.45 13 3300 200 45 Max. Units Conditions 240 IC = 28A 29 nC VCC = 400V See Fig. 8 80 VGE = 15V ––– ––– TJ = 25°C ns 170 IC = 28A, VCC = 720V 220 VGE = 15V, RG = 5.0Ω ––– Energy losses include "tail" ––– mJ See Fig. 10, 11, 13, 14 1.7 ––– TJ = 150°C, ––– IC = 28A, VCC = 720V ns ––– VGE = 15V, RG = 5.0Ω ––– Energy losses include "tail" ––– mJ See Fig. 13, 14 ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0Ω,
(See fig. 13a)
Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4PF50W
60
For both:
Triangular wave:
50
Load Current ( A )
Duty cycle: 50% TJ = 125˚C Tsink 90˚C = Gate drive as specified Power Dissipation = 40W
40
Clamp voltage: 80% of rated
Square wave:
30
60% of rated voltage
20
10
Ideal diodes
0 0.1 1 10
)
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
1000
1000
I C , Collector-to-Emitter Current (A)
TJ = 25 °C TJ = 150 °C
100
I C , Collector-to-Emitter Current (A)
100
T = 150 °C J
TJ = 25 °C
10
10
1 1
V GE = 15V 20µs PULSE WIDTH
10
1 5 6 7
V CC = 50V 5µs PULSE WIDTH
8 9 10
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4PF50W
60 3.0
50
40
V CE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH
Maximum DC Collector Current(A)
IC = 56 A
2.5
30
IC = 28 A
20
2.0
IC = 14 A
10
0 25 50 75 100 125 150
1.5 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( °C)
TJ , Junction Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature
1
D = 0.50
Thermal Response (Z thJC)
0.20 0.1 0.10 0.05 0.02 0.01
0.01
SINGLE PULSE (THERMAL RESPONSE)
PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC
0.001 0.00001
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PF50W
6000 20
5000
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
VCC = 400V I C = 28A
16
C, Capacitance (pF)
4000
Cies
12
3000
8
2000
Coes Cres
4
1000
0 1 10 100
0 0 40 80 120 160
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
4.0
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 720V V GE = 15V TJ = 25 ° C I C = 28A
100
5.0 Ω RG = Ohm VGE = 15V VCC = 720V
IC = 56 A
3.0
10
IC = 28 A IC = 14 A
1
2.0
1.0 0 10 20 30 40 50 60
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG , Gate Resistance ( Ω )
TJ , Junction Temperature ( °C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4PF50W
12
Total Switching Losses (mJ)
I C , Collector Current (A)
RG TJ VCC 10 VGE
8
5.0Ω = Ohm = 150 ° C = 720V = 15V
1000
VGE = 20V T J = 125 oC
100
6
4
10
2
0 0 10 20 30 40 50 60
SAFE OPERATING AREA
1 1 10 100 1000
I C , Collector Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
6
www.irf.com
IRG4PF50W
L 50V 1 00 0V VC *
D .U .T.
RL = 0 - 720V 720V 4 X IC@25°C
480µF 960V
* Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax ) * Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor w ill inc rea se to obta in ra ted Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L D river* 50V 1000V
* Driver same type as D.U.T., VC = 720V
D .U .T. VC
Fig. 14a - Switching Loss
Test Circuit
9 0%
1 0% 90 %
VC
t d (o ff)
Fig. 14b - Switching Loss
Waveforms
10 % IC 5% t d (o n )
tr E on E ts = ( Eo n +E o ff )
tf t =5µ s E o ff
www.irf.com
7
IRG4PF50W
Case Outline and Dimensions — TO-247AC
3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 (.0 1 0 ) M D B M -A5 .5 0 (.2 1 7)
-D-
1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B-
5 .3 0 ( .2 0 9 ) 4 .7 0 ( .1 8 5 ) 2 .5 0 (.0 8 9 ) 1 .5 0 (.0 5 9 ) 4
N O TE S : 1 D IM E N S IO N S & T O L E R A N C IN G P E R A N S I Y 14 .5 M , 1 9 8 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M ILL IM E T E R S ( IN C H E S ) . 4 C O N F O R M S T O JE D E C O U T L IN E T O -2 4 7 A C .
2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 1 2 3
2X
5 .5 0 (.2 17 ) 4 .5 0 (.1 77 )
-C-
LEAD 1234-
A S S IG N M E N T S GATE COLLE CTO R E M IT T E R COLLE CTO R
*
1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 )
4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 )
*
3X C AS 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 )
2 .4 0 ( .0 9 4 ) 2 .0 0 ( .0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X
L O N G E R L E A D E D ( 2 0m m ) V E R S IO N A V A IL A B LE ( T O -24 7 A D ) T O O R D E R A D D "-E " S U F F IX T O P A R T N U M B ER
3X
1 .4 0 (.0 5 6 ) 1 .0 0 (.0 3 9 ) 0 .2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 )
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)
D im e n s ion s in M illim e te rs a n d (In c h es )
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: 171 (K&H Bldg.) 30-4 Nishi-ikebukuro 3-chome, Toshima-ku, Tokyo Japan Tel: 81 33 983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 16907 Tel: 65 221 8371 Data and specifications subject to change without notice. 4/98
8
www.irf.com