PD- 91579A
IRG4PH30KD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• High short circuit rating optimized for motor control, tsc =10µs, VCC = 720V , TJ = 125°C, VGE = 15V • Combines low conduction losses with high switching speed • Tighter parameter distribution and higher efficiency than previous generations • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes
C
Short Circuit Rated UltraFast IGBT
VCES = 1200V
G E
VCE(on) typ. = 3.10V
@VGE = 15V, IC = 10A
n-ch an nel
Benefits
• Latest generation 4 IGBT's offer highest power density motor controls possible • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses • This part replaces IRGPH30MD2 products • For hints see design tip 97003
TO-247AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
1200 20 10 40 40 10 40 10 ± 20 100 42 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
µs V W
°C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.24 ––– 6 (0.21)
Max.
1.2 2.5 ––– 40 –––
Units
°C/W
g (oz)
www.irf.com
1
2/7/2000
IRG4PH30KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown VoltageS 1200 — Temperature Coeff. of Breakdown Voltage — 0.19 Collector-to-Emitter Saturation Voltage — 3.10 — 3.90 — 3.01 Gate Threshold Voltage 3.0 — Temperature Coeff. of Threshold Voltage — -12 Forward Transconductance T 4.3 6.5 Zero Gate Voltage Collector Current — — — — Diode Forward Voltage Drop — 3.4 — 3.3 Gate-to-Emitter Leakage Current — —
Max. Units Conditions — V VGE = 0V, IC = 250µA — V/°C VGE = 0V, IC = 1.0mA 4.2 IC = 10A VGE = 15V — V IC = 20A See Fig. 2, 5 — IC = 10A, TJ = 150°C 6.0 VCE = VGE , IC = 250µA — mV/°C VCE = VGE , IC = 250µA — S VCE = 100V, IC = 10A 250 µA VGE = 0V, VCE = 1200V 3500 VGE = 0V, VCE = 1200V, TJ = 150°C 3.8 V IC = 10A See Fig. 13 3.7 IC = 10A, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 53 80 IC = 10A 9.0 14 nC VCC = 400V See Fig.8 21 32 VGE = 15V 39 — 84 — TJ = 25°C ns 220 340 IC = 10A, VCC = 800V 90 140 VGE = 15V, R G = 23Ω 0.95 — Energy losses include "tail" 1.15 — mJ and diode reverse recovery 2.10 2.6 See Fig. 9,10,18 — — µs VCC = 720V, TJ = 125°C VGE = 15V, RG = 5.0Ω 42 — TJ = 150°C, See Fig. 10,11,18 79 — IC = 10A, VCC = 800V ns 540 — VGE = 15V, R G = 23Ω, 97 — Energy losses include "tail" 3.5 — mJ and diode reverse recovery 13 — nH Measured 5mm from package 800 — VGE = 0V 60 — pF VCC = 30V See Fig. 7 14 — ƒ = 1.0MHz 50 76 ns TJ = 25°C See Fig. 72 110 TJ = 125°C 14 I F = 10A 4.4 7.0 A TJ = 25°C See Fig. 5.9 8.8 TJ = 125°C 15 VR = 200V 130 200 nC TJ = 25°C See Fig. 250 380 TJ = 125°C 16 di/dt = 200A/µs 210 — A/µs TJ = 25°C See Fig. 180 — TJ = 125°C 17
2
www.irf.com
IRG4PH30KD
15
F o r b o th :
LOAD CURRENT (A)
10
S q u a re w a v e : 6 0% of rate d volta ge
I
D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d P o w e r D is s ip a tio n = 24 W
5
Id e a l d io d e s
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
10
10
TJ = 150 °C TJ = 25 °C V = 15V 20µs PULSE WIDTH
GE 1 10
TJ = 150 ° C TJ = 25 °C V = 50V 5µs PULSE WIDTH
CC 6 8 10 12 14
1
1
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4PH30KD
20 5.0
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
Maximum DC Collector Current(A)
4.5
15
IC = 20 A
4.0
10
3.5
IC = 10 A
3.0
5
IC = 5 A
2.5
0 25 50 75 100 125 150
2.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( °C)
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01
SINGLE PULSE (THERMAL RESPONSE) 0.0001 0.001 0.01
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.1 1
P DM t1 t2
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH30KD
1200 1000
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
800
Cies
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 10A
15
600
10
400
200
C oes C res
5
0 1 10 100
0 0 10 20 30 40 50 60
VCE , Collector-to-Emitter Voltage (V)
Q G , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
2.4
Total Switching Losses (mJ)
2.3
Total Switching Losses (mJ)
V CC = 800V V GE = 15V TJ = 25 ° C I C = 10A
100
RG = Ohm G = 23Ω VGE = 15V VCC = 800V
10
IC = 20 A IC = 10 A IC = 5 A
2.2
1
2.1
2.0 0 10 20 30 40 50
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
R, ate Resistance ( Ω RG GG, Gate Resistance )(Ohm)
TJ , Junction Temperature ( °C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4PH30KD
8.0
Total Switching Losses (mJ)
6.0
4.0
I C , Collector Current (A)
10 15 20
RG = =3Ω G 2 Ohm T J = 150 °C VCC = 800V VGE = 15V
100
VGE = 20V T J = 125 oC
10
2.0
0.0 0 5
SAFE OPERATING AREA
1 1 10 100 1000 10000
I C , Collector Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector Current
100
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current ( A )
10
T J = 150 ° C T J = 125 ° C T = 25 ° C
J
1 0.0 2.0 4.0 6.0 8.0
F orward V olta g e D rop - V F M ( V )
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH30KD
100 100
I F = 20A I F = 10A I F = 5.0A
80
V R = 20 0V T J = 1 2 5 °C T J = 2 5 °C
I F = 20A IF = 10A IF = 5.0A
trr- ( ns)
IIRRM - ( A )
VR = 2 00 V TJ = 1 2 5 ° C TJ = 2 5 ° C 1000
60
10
40
20 100
di f /dt - ( A/ µ s )
1 100
1000
di f /dt - ( A/ µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
1000 VR = 20 0V TJ = 1 2 5 ° C TJ = 2 5 ° C 800
Fig. 15 - Typical Recovery Current vs. dif/dt
10000 V R = 20 0V T J = 12 5 ° C T J = 25 ° C
I F = 20A IF = 10A
di(rec)M/dt - ( A/µs)
I F = 20A I F = 10A I F = 5.0A
600
I F = 5.0A
1000
QIRR - ( nC )
400
100
200
0 100
di f /dt - ( A/ µ s )
1000
10 100
1000
di f /dt - ( A/ µ s )
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4PH30KD
90% Vge +Vge
Same ty pe device as D .U.T.
V ce
Ic 80% of Vce 430µF D .U .T.
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
E o ff =
∫
t1 + 5 µ S V c e ic d t t1
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
∫ icdt
trr id d t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 E o n = V ce ie d t t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
∫
E re c =
t1
∫ Vcicdt
t4 V d id d t t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4PH30KD
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 600 0µF 100V Vc*
D.U.T.
RL= 0 - 480V
960V 4 X I C @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4PH30KD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 23Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot.
Case Outline — TO-247AC
3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 ( .0 1 0 )
-A5 .5 0 (.2 17 )
-D-
1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B-
M
DBM
5 .3 0 (.2 0 9 ) 4 .7 0 (.1 8 5 ) 2.5 0 ( .0 8 9) 1.5 0 ( .0 5 9) 4
NOTE S: 1 D IM E N S IO N S & T O LE R A N C IN G P E R A N S I Y 14 .5M , 1 98 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M IL LIM E T E R S (IN C H E S ). 4 C O N F O R M S T O J E D E C O U T L IN E T O -2 4 7A C .
2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 1 2 3
2X
5.5 0 (.2 1 7) 4.5 0 (.1 7 7)
-C-
LEAD 1234-
A S S IG N M E N T S GAT E COLLECTO R E M IT T E R COLLECTO R
*
1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 )
4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 ) 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 )
*
3X C AS
2 .4 0 (.0 9 4 ) 2 .0 0 (.0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X
LO N G E R LE A D E D (2 0m m ) V E R S IO N A V A IL A B L E (T O -2 47 A D ) T O O R D E R A D D "-E " S U F F IX TO PAR T NUM BER
3X
1 .4 0 ( .0 56 ) 1 .0 0 ( .0 39 ) 0.2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 )
CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC ( T O -3P )
D im e n s io n s in M illim e te rs a n d (In c h e s )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN: 16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 6/00
10
www.irf.com