PD - 91685
IRG4PSH71U
INSULATED GATE BIPOLAR TRANSISTOR
Features
• UltraFast switching speed optimized for operating frequencies 8 to 40kHz in hard switching, 200kHz in resonant mode soft switching • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency (minimum switching and conduction losses) than prior generations • Industry-benchmark Super-247 package with higher power handling capability compared to same footprint TO-247 • Creepage distance increased to 5.35mm
C
UltraFast Speed IGBT
VCES = 1200V
G E
VCE(on) typ. = 2.50V
@VGE = 15V, IC = 50A
n-channel
Benefits
• Generation 4 IGBT's offer highest efficiencies available • Maximum power density, twice the power handling of the TO-247, less space than TO-264 • IGBTs optimized for specific application conditions • Cost and space saving in designs that require multiple, paralleled IGBTs
SUPER - 247
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load current
Max.
1200 99 50 200 200 ±20 150 350 140 -55 to +150 300 (0.063 in. (1.6mm) from case)
Units
V A
Ã
Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy
d
Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec.
g
V mJ W
°C
Thermal / Mechanical Characteristics
Parameter
RθJC RθCS RθJA Wt Junction-to-Case- IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Recommended Clip Force Weight
Min.
––– ––– ––– 20 (2.0) –––
Typ.
––– 0.24 ––– 6 (0.21)
Max.
0.36 ––– 38 –––
Units
°C/W
N (kgf) g (oz.)
www.irf.com
1
5/24/04
IRG4PSH71U
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltage V(BR)CES 1200 — — V VGE = 0V, IC = 250µA V(BR)ECS Emitter-to-Collector Breakdown Voltage 19 — — V VGE = 0V, IC = 1.0A ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.78 — V/°C VGE = 0V, IC = 1mA IC = 70A VGE = 15V — 2.52 2.70 V IC = 140A VCE(on) See Fig.2, 5 Collector-to-Emitter Saturation Voltage — 3.17 — IC = 70A, TJ = 150°C — 2.68 — VCE = VGE, IC = 250µA VGE(th) Gate Threshold Voltage 3.0 — 6.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -9.2 — mV/°C VCE = VGE, IC = 1.0mA 48 72 — S VCE = 100V, IC = 70A gfe Forward Transconductance ICES Zero Gate Voltage Collector Current — — 500 µA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 10V — — 2.0 VGE = 0V, VCE = 1200V, TJ = 150°C — — 5000 IGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V
eÃ
Min. Typ. Max. Units
Conditions
f
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf ETS LE Cies Coes Cres Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
— — — — — — — — — — — — — — — — — — — 370 560 61 24 120 50 51 — 70 — 280 390 170 260 4.77 — 9.54 — 14.3 15.8 49 — 70 — 390 — 360 — 25 — 13 — 7280 — 290 — 50 —
Conditions
IC = 70A See Fig.8 nC VCC = 400V VGE = 15V IC = 70A, VCC = 960V ns VGE = 15V, RG = 5.0Ω Energy losses include "tail" See Fig. 9, 10, 11, 14 mJ TJ = 150°C, See Fig. 9, 10, 11, 14 IC = 70A, VCC = 960V VGE = 15V, RG = 5.0Ω Energy losses include "tail"
ns
mJ nH Measured 5mm from package VGE = 0V See Fig.7 pF VCC = 30V, f = 1.0MHz
Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0 Ω (figure 13a) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
Repetitive rating; pulse width limited by maximumjunction temperature.
2
www.irf.com
IRG4PSH71U
60
Triangular wave:
50
Clamp voltage: 80% of rated
Load Current ( A )
40
For both: Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 58W
30
Square wave:
20
60% of rated voltage
10
Ideal diodes
0 0.1 1 10 100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
1000
1000.0
IC , Collector-to Emitter Current (A)
100
IC, Collector-to-Emitter Current (A)
100.0
T J = 150°C
10
T J = 150°C
10.0
T J = 25°C
1
T J = 25°C
1.0
VGE= 15V < 60µs PULSE WIDTH
0.1 0 1 2 3 4 5
VCC = 50V < 60µs PULSE WIDTH
0.1 4 6 8 10
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4PSH71U
100
4.0
VCE , Collector-to Emitter Voltage (V)
V GE = 15V
Maximum DC Collector Current (A)
80
VGE = 15V 380µs PULSE WIDTH
IC = 140A
3.5
60
3.0
40
IC = 70A
2.5
20
IC = 35A
2.0 -60 -40 -20 0 20 40 60 80 100 120 140 160
0 25 50 75 100 125 150
T J , Junction Temperature (°C)
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature
1
D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05 0.02 0.01
τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 τC τ τ2
0.01
0.001
Ri (°C/W) τi (sec) 0.253 0.009159 0.1057 0.038041
0.0001
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 0.01 0.1
1E-005 1E-006 1E-005 0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PSH71U
14000 12000 10000 VGE = 0V, f = 1 MHZ C ies = C ge + C gc , C ce C res = C gc C oes = C ce + Cgc
20
SHORTED
VGE, Gate-to-Emitter Voltage (V)
16
VCC = 400V IC = 70A
C, Capacitance (pF)
Cies
8000 6000
12
Coes
4000 2000 0 1 10 100 1000
8
Cres
4
0 0 100 200 300 400
VCE, Collector-to-Emitter Voltage (V)
QG, Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
25
1000
Total Switching Losses (mJ)
Switching Losses (mJ)
20
VGE = 15V T J = 25°C I C = 70A
VCC = 960V
R G = 5.0Ω VGE = 15V VCC = 960V 100 I C = 140A I C = 70A 10 I C = 35A
15
10 0 10 20 30 40
1 -60 -40 -20 0 20 40 60 80 100 120 140 160
RG, Gate Resistance (Ω )
T J, Junction Temperature (°C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4PSH71U
70 RG = 5.0Ω 60 TJ = 150°C VGE = 15V VCC = 960V
1000 VGE = 20V TJ = 125°
50 40 30 20 10 0 20
IC, Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
100
SAFE OPERATING AREA
10
1
40
60
80
100
120
140
1
10
100
1000
10000
IC, Collector Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
6
www.irf.com
IRG4PSH71U
L 50V 1000V VC *
D.U.T.
RL = 0 - 960V
960V 4 X IC@25°C
c
480µF 960V
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L Driver* 50V 1000V VC D.U.T.
Fig. 14a - Switching Loss
Test Circuit
* Driver same type as D.U.T., VC = 960V
Ã
d
e
c d
90%
e
VC 90%
10%
t d(off)
Fig. 14b - Switching Loss
Waveforms
10% IC 5% t d(on)
tr E on E ts = (Eon +Eoff )
tf t=5µs E off
www.irf.com
7
IRG4PSH71U
Super-247™ (TO-274AA) Package Outline
0.13 [.005] 16.10 [.632] 15.10 [.595] A 5.50 [.216] 4.50 [.178] 0.25 [.010] BA 2X R 3.00 [.118] 2.00 [.079] 2.15 [.084] 1.45 [.058] 13.90 [.547] 13.30 [.524]
1.30 [.051] 0.70 [.028] 20.80 [.818] 19.80 [.780] 4 16.10 [.633] 15.50 [.611] 4
C 1 2 3 B 14.80 [.582] 13.80 [.544] Ø 1.60 [.063] MAX. E E
4.25 [.167] 3.85 [.152]
5.45 [.215] 2X
3X
1.60 [.062] 1.45 [.058] BA
3X
1.30 [.051] 1.10 [.044]
0.25 [.010]
S ECT ION E-E NOT ES : 1. DIMENS IONING AND TOLERANCING PER AS ME Y14.5M-1994. 2. DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES ] 3. CONTROLLING DIMENS ION: MILLIMET ER 4. OUT LINE CONFORMS TO JEDEC OUTLINE T O-274AA
2.35 [.092] 1.65 [.065]
LEAD AS S IGNMENT S MOS FET 1 - GATE 2 - DRAIN 3 - S OURCE 4 - DRAIN IGBT 1 - GATE 2 - COLLECTOR 3 - EMIT TER 4 - COLLECTOR
Super-247™ (TO-274AA)Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE A8B9 INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE
IRFPS37N50A
PART NUMBER
A8B9
0020
TOP
DATE CODE (YYWW) YY = YEAR WW = WEEK
Super TO-247™ package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.5/04
8
www.irf.com