PD - 91686
IRG4PSH71UD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
• UltraFast switching speed optimized for operating frequencies 8 to 40kHz in hard switching, 200kHz in resonant mode soft switching • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency (minimum switching and conduction losses) than prior generations • Industry-benchmark Super-247 package with higher power handling capability compared to same footprint TO-247 • Creepage distance increased to 5.35mm
UltraFast Copack IGBT
C
Features
VCES = 1200V
G E
VCE(on) typ. = 2.52V
n-channel
@VGE = 15V, IC = 50A
Benefits
• Generation 4 IGBT's offer highest efficiencies available • Maximum power density, twice the power handling of the TO-247, less space than TO-264 • IGBTs optimized for specific application conditions • Cost and space saving in designs that require multiple, paralleled IGBTs • HEXFREDTM antiparallel Diode minimizes switching losses and EMI
SUPER - 247
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE IF @ Tc = 100°C IFM PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load current Gate-to-Emitter Voltage Diode Continuous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec.
Max.
1200 99 50 200 200 ±20 70 200 350 140 -55 to +150 300 (0.063 in. (1.6mm) from case)
Units
V A
Ã
d
V
W
°C
Thermal / Mechanical Characteristics
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Recommended Clip Force Weight
Min.
––– ––– ––– ––– 20 (2.0) –––
Typ.
––– ––– 0.24 ––– 6 (0.21)
Max.
0.36 0.36 ––– 38 –––
Units
°C/W
www.irf.com
N (kgf) g (oz.)
1
5/24/04
IRG4PSH71UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltage V(BR)CES 1200 — — V VGE = 0V, IC = 250µA V(BR)ECS Emitter-to-Collector Breakdown Voltage 19 — — V VGE = 0V, IC = 1.0A ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.78 — V/°C VGE = 0V, IC = 1mA IC = 70A VGE = 15V — 2.52 2.70 V IC = 140A VCE(on) See Fig.2, 5 Collector-to-Emitter Saturation Voltage — 3.17 — IC = 70A, TJ = 150°C — 2.68 — VCE = VGE, IC = 250µA VGE(th) Gate Threshold Voltage 3.0 — 6.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -9.2 — mV/°C VCE = VGE, IC = 1.0mA 48 72 — S VCE = 100V, IC = 70A gfe Forward Transconductance ICES Zero Gate Voltage Collector Current — — 500 µA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 10V — — 2.0 VGE = 0V, VCE = 1200V, TJ = 150°C — — 5000 VFM Diode Forward Voltage Drop — 2.92 3.9 V IF = 70A See Fig.13 IF = 70A, TJ = 150°C — 2.88 3.7 IGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V
eÃ
Min. Typ. Max. Units
Conditions
f
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf ETS LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb
Min. Typ. Max. Units
— — — — — — — — — — — — — — — — — — — — — — — — — — — 380 570 61 24 130 200 46 — 77 — 250 350 220 330 8.8 — 9.4 — 18.2 19.7 43 — 78 — 330 — 480 — 26 — 13 — 6640 — 420 — 60 — 110 170 180 6.0 8.9 350 270 9.0 13 530
Conditions
IC = 70A See Fig.8 nC VCC = 400V VGE = 15V IC = 70A, VCC = 960V ns VGE = 15V, RG = 5.0Ω Energy losses include "tail" See Fig. 9, 10, 11, 14 mJ TJ = 150°C, See Fig. 9, 10, 11, 14 IC = 70A, VCC = 960V VGE = 15V, RG = 5.0Ω Energy losses include "tail"
ns
mJ nH Measured 5mm from package VGE = 0V See Fig.7 pF VCC = 30V, f = 1.0MHz See Fig ns TJ=25°C
TJ=125°C 14 See Fig 15 See Fig 16 See Fig 17 di/dt = 200A/µs VR = 200V IF = 70A
A
TJ=25°C TJ=125°C
nC TJ=25°C
TJ=125°C 870 1300 150 230 A/µs TJ=25°C TJ=125°C 130 200
2
www.irf.com
IRG4PSH71UD
40
30
Load Current ( A )
20
Square wave: 60% of rated voltage
Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Turn-on losses include effects of reverse recovery Power Dissipation = 58W
10
Ideal diodes
0 0.1 1 10 100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
1000
1000.0
IC , Collector-to Emitter Current (A)
100
IC, Collector-to-Emitter Current (A)
100.0
T J = 150°C
10
T J = 150°C
10.0
T J = 25°C
1
T J = 25°C
1.0
VGE= 15V < 60µs PULSE WIDTH
0.1 0 1 2 3 4 5
VCC = 50V < 60µs PULSE WIDTH
0.1 4 6 8 10
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4PSH71UD
100
4.0
VCE , Collector-to Emitter Voltage (V)
V GE = 15V
Maximum DC Collector Current (A)
80
VGE = 15V 380µs PULSE WIDTH
3.5
IC = 140A
60
3.0
IC = 70A
2.5
40
IC = 35A
2.0
20
0 25 50 75 100 125 150
1.5 -60 -40 -20 0 20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature
1
D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05 0.02 0.01
τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 τC τ τ2
0.01
0.001
Ri (°C/W) τi (sec) 0.253 0.009159 0.1057 0.038041
0.0001
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 0.01 0.1
1E-005 1E-006 1E-005 0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PSH71UD
14000 12000 10000 VGE = 0V, f = 1 MHZ C ies = C ge + Cgc , C ce C res = C gc C oes = C ce + C gc
20
SHORTED
VGE, Gate-to-Emitter Voltage (V)
16
VCC = 400V IC = 70A
C, Capacitance (pF)
Cies
8000 6000
12
Coes
4000 2000 0 1 10 100 1000
8
Cres
4
0 0 100 200 300 400
VCE, Collector-to-Emitter Voltage (V)
QG, Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
22 VCC = 960V VGE = 15V
1000 RG = 5.0Ω VGE = 15V VCC = 960V 100 I C = 140A I C = 70A 10 I C = 35A
Switching Losses (mJ)
20
I C = 70A
18
Total Switching Losses (mJ)
T J = 25°C
16 0 10 20 30 40
1 -60 -40 -20 0 20 40 60 80 100 120 140 160
RG, Gate Resistance (Ω )
T J, Junction Temperature (°C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4PSH71UD
70 RG = 5.0Ω
1000 VGE = 20V TJ = 125°
50 40 30 20 10 0 20
VCC = 960V
IC, Collector-to-Emitter Current (A)
60
Total Switching Losses (mJ)
TJ = 150°C VGE = 15V
100
SAFE OPERATING AREA
10
1
40
60
80
100
120
140
160
1
10
100
1000
10000
IC, Collector Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
1000
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F ( A )
100
10 T J = 150°C T J = 25°C 1
0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Forward Voltage Drop - V F ( V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PSH71UD
400
100
300
IF = 140A IF = 70A IF = 35A
80
200
IRRM - (A)
60
IF = 140A IF = 70A IF = 35A
trr - (ns)
40
100 VR = 200V TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000
20
VR = 200V TJ = 125°C TJ = 25°C
0 100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
12000
Fig. 15 - Typical Recovery Current vs. dif/dt
dif / dt - (A / µs)
10000
IF = 140A IF = 70A IF = 35A
1700
IF = 140A IF = 70A
di(rec)M/dt - (A)
1300
8000
IF = 35A
Qrr - (nC)
6000
900
4000
500 2000 VR = 200V T J = 125°C T J = 25°C 0 100 200 300 400 500 600 700 800 900 1000 100 100 200 300 400 500 600 700 800 900 1000 VR = 200V T J = 125°C T J = 25°C
Fig. 16 - Typical Stored Charge vs. dif/dt
dif / dt - (A / µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
dif / dt - (A / µs)
www.irf.com
7
IRG4PSH71UD
Same type device as D.U.T.
90%
80% of Vce
430µF D.U.T.
Vge
V C
10% 90%
td(off)
10% IC 5%
t d(on)
tr
tf t=5µs Eon Ets= (E +Eoff ) on Eoff
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
Ic
trr
Qrr =
∫
trr id dt tx
tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk
10% Irr Vcc
Vpk
Irr
Ic DIODE RECOVERY WAVEFORMS
td(on)
tr
5% Vce t2 Eon = Vce ie dt t1
∫
t1
t2
DIODE REVERSE RECOVERY ENERGY t3
t4 Erec = Vd id dt t3
∫
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4PSH71UD
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µF 100V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4PSH71UD
Super-247™ (TO-274AA) Package Outline
0.13 [.005] 16.10 [.632] 15.10 [.595] A 5.50 [.216] 4.50 [.178] 0.25 [.010] 13.90 [.547] 13.30 [.524] BA 2X R 3.00 [.118] 2.00 [.079] 2.15 [.084] 1.45 [.058]
1.30 [.051] 0.70 [.028] 20.80 [.818] 19.80 [.780] 4 16.10 [.633] 15.50 [.611] 4
C 1 2 3 B 14.80 [.582] 13.80 [.544] Ø 1.60 [.063] MAX. E E
4.25 [.167] 3.85 [.152]
5.45 [.215] 2X
3X
1.60 [.062] 1.45 [.058] BA
3X
1.30 [.051] 1.10 [.044]
0.25 [.010]
Super-247™ (TO-274AA) Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE A8B9 INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE
IRFPS37N50A
2.35 [.092] 1.65 [.065] S ECT ION E-E NOT ES: 1. DIMENS IONING AND T OLERANCING PER AS ME Y14.5M-1994. 2. DIMENSIONS ARE SHOWN IN MILLIMET ERS [INCHES ] 3. CONT ROLLING DIMENS ION: MILLIMET ER 4. OUT LINE CONFORMS T O JEDEC OUT LINE T O-274AA
LEAD AS SIGNMENT S MOSFET 1 - GAT E 2 - DRAIN 3 - S OURCE 4 - DRAIN IGBT 1 - GAT E 2 - COLLECT OR 3 - EMIT T ER 4 - COLLECT OR
PART NUMBER
A8B9
0020
TOP
DATE CODE (YYWW) YY = YEAR WW = WEEK
Super TO-247™ package is not recommended for Surface Mount Application.
Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0 Ω (figure 13a) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
Repetitive rating; pulse width limited by maximumjunction temperature.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.5/04
10
www.irf.com