0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG4PSH71UD

IRG4PSH71UD

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRG4PSH71UD - INSULATED GATE BIPOLAR TRANSISTOR WITH - International Rectifier

  • 数据手册
  • 价格&库存
IRG4PSH71UD 数据手册
PD - 91686 IRG4PSH71UD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE • UltraFast switching speed optimized for operating frequencies 8 to 40kHz in hard switching, 200kHz in resonant mode soft switching • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency (minimum switching and conduction losses) than prior generations • Industry-benchmark Super-247 package with higher power handling capability compared to same footprint TO-247 • Creepage distance increased to 5.35mm UltraFast Copack IGBT C Features VCES = 1200V G E VCE(on) typ. = 2.52V n-channel @VGE = 15V, IC = 50A Benefits • Generation 4 IGBT's offer highest efficiencies available • Maximum power density, twice the power handling of the TO-247, less space than TO-264 • IGBTs optimized for specific application conditions • Cost and space saving in designs that require multiple, paralleled IGBTs • HEXFREDTM antiparallel Diode minimizes switching losses and EMI SUPER - 247 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE IF @ Tc = 100°C IFM PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load current Gate-to-Emitter Voltage Diode Continuous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec. Max. 1200 99 50 200 200 ±20 70 200 350 140 -55 to +150 300 (0.063 in. (1.6mm) from case) Units V A Ù d V W °C Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS RθJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Recommended Clip Force Weight Min. ––– ––– ––– ––– 20 (2.0) ––– Typ. ––– ––– 0.24 ––– 6 (0.21) Max. 0.36 0.36 ––– 38 ––– Units °C/W www.irf.com N (kgf) g (oz.) 1 5/24/04 IRG4PSH71UD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown Voltage V(BR)CES 1200 — — V VGE = 0V, IC = 250µA V(BR)ECS Emitter-to-Collector Breakdown Voltage 19 — — V VGE = 0V, IC = 1.0A ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.78 — V/°C VGE = 0V, IC = 1mA IC = 70A VGE = 15V — 2.52 2.70 V IC = 140A VCE(on) See Fig.2, 5 Collector-to-Emitter Saturation Voltage — 3.17 — IC = 70A, TJ = 150°C — 2.68 — VCE = VGE, IC = 250µA VGE(th) Gate Threshold Voltage 3.0 — 6.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -9.2 — mV/°C VCE = VGE, IC = 1.0mA 48 72 — S VCE = 100V, IC = 70A gfe Forward Transconductance ICES Zero Gate Voltage Collector Current — — 500 µA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 10V — — 2.0 VGE = 0V, VCE = 1200V, TJ = 150°C — — 5000 VFM Diode Forward Voltage Drop — 2.92 3.9 V IF = 70A See Fig.13 IF = 70A, TJ = 150°C — 2.88 3.7 IGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V eà Min. Typ. Max. Units Conditions f Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf ETS LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. Typ. Max. Units — — — — — — — — — — — — — — — — — — — — — — — — — — — 380 570 61 24 130 200 46 — 77 — 250 350 220 330 8.8 — 9.4 — 18.2 19.7 43 — 78 — 330 — 480 — 26 — 13 — 6640 — 420 — 60 — 110 170 180 6.0 8.9 350 270 9.0 13 530 Conditions IC = 70A See Fig.8 nC VCC = 400V VGE = 15V IC = 70A, VCC = 960V ns VGE = 15V, RG = 5.0Ω Energy losses include "tail" See Fig. 9, 10, 11, 14 mJ TJ = 150°C, See Fig. 9, 10, 11, 14 IC = 70A, VCC = 960V VGE = 15V, RG = 5.0Ω Energy losses include "tail" ns mJ nH Measured 5mm from package VGE = 0V See Fig.7 pF VCC = 30V, f = 1.0MHz See Fig ns TJ=25°C TJ=125°C 14 See Fig 15 See Fig 16 See Fig 17 di/dt = 200A/µs VR = 200V IF = 70A A TJ=25°C TJ=125°C nC TJ=25°C TJ=125°C 870 1300 150 230 A/µs TJ=25°C TJ=125°C 130 200 2 www.irf.com IRG4PSH71UD 40 30 Load Current ( A ) 20 Square wave: 60% of rated voltage Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Turn-on losses include effects of reverse recovery Power Dissipation = 58W 10 Ideal diodes 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 1000 1000.0 IC , Collector-to Emitter Current (A) 100 IC, Collector-to-Emitter Current (A) 100.0 T J = 150°C 10 T J = 150°C 10.0 T J = 25°C 1 T J = 25°C 1.0 VGE= 15V < 60µs PULSE WIDTH 0.1 0 1 2 3 4 5 VCC = 50V < 60µs PULSE WIDTH 0.1 4 6 8 10 VCE , Collector-to-Emitter Voltage (V) VGE, Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics www.irf.com 3 IRG4PSH71UD 100 4.0 VCE , Collector-to Emitter Voltage (V) V GE = 15V Maximum DC Collector Current (A) 80 VGE = 15V 380µs PULSE WIDTH 3.5 IC = 140A 60 3.0 IC = 70A 2.5 40 IC = 35A 2.0 20 0 25 50 75 100 125 150 1.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) T J , Junction Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature 1 D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 0.02 0.01 τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 τC τ τ2 0.01 0.001 Ri (°C/W) τi (sec) 0.253 0.009159 0.1057 0.038041 0.0001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1E-005 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PSH71UD 14000 12000 10000 VGE = 0V, f = 1 MHZ C ies = C ge + Cgc , C ce C res = C gc C oes = C ce + C gc 20 SHORTED VGE, Gate-to-Emitter Voltage (V) 16 VCC = 400V IC = 70A C, Capacitance (pF) Cies 8000 6000 12 Coes 4000 2000 0 1 10 100 1000 8 Cres 4 0 0 100 200 300 400 VCE, Collector-to-Emitter Voltage (V) QG, Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 22 VCC = 960V VGE = 15V 1000 RG = 5.0Ω VGE = 15V VCC = 960V 100 I C = 140A I C = 70A 10 I C = 35A Switching Losses (mJ) 20 I C = 70A 18 Total Switching Losses (mJ) T J = 25°C 16 0 10 20 30 40 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 RG, Gate Resistance (Ω ) T J, Junction Temperature (°C) Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Junction Temperature www.irf.com 5 IRG4PSH71UD 70 RG = 5.0Ω 1000 VGE = 20V TJ = 125° 50 40 30 20 10 0 20 VCC = 960V IC, Collector-to-Emitter Current (A) 60 Total Switching Losses (mJ) TJ = 150°C VGE = 15V 100 SAFE OPERATING AREA 10 1 40 60 80 100 120 140 160 1 10 100 1000 10000 IC, Collector Current (A) VCE, Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 1000 Fig. 12 - Turn-Off SOA Instantaneous Forward Current - I F ( A ) 100 10 T J = 150°C T J = 25°C 1 0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Forward Voltage Drop - V F ( V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PSH71UD 400 100 300 IF = 140A IF = 70A IF = 35A 80 200 IRRM - (A) 60 IF = 140A IF = 70A IF = 35A trr - (ns) 40 100 VR = 200V TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 20 VR = 200V TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt 12000 Fig. 15 - Typical Recovery Current vs. dif/dt dif / dt - (A / µs) 10000 IF = 140A IF = 70A IF = 35A 1700 IF = 140A IF = 70A di(rec)M/dt - (A) 1300 8000 IF = 35A Qrr - (nC) 6000 900 4000 500 2000 VR = 200V T J = 125°C T J = 25°C 0 100 200 300 400 500 600 700 800 900 1000 100 100 200 300 400 500 600 700 800 900 1000 VR = 200V T J = 125°C T J = 25°C Fig. 16 - Typical Stored Charge vs. dif/dt dif / dt - (A / µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt dif / dt - (A / µs) www.irf.com 7 IRG4PSH71UD Same type device as D.U.T. 90% 80% of Vce 430µF D.U.T. Vge V C 10% 90% td(off) 10% IC 5% t d(on) tr tf t=5µs Eon Ets= (E +Eoff ) on Eoff Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg +Vg Ic trr Qrr = ∫ trr id dt tx tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk 10% Irr Vcc Vpk Irr Ic DIODE RECOVERY WAVEFORMS td(on) tr 5% Vce t2 Eon = Vce ie dt t1 ∫ t1 t2 DIODE REVERSE RECOVERY ENERGY t3 t4 Erec = Vd id dt t3 ∫ t4 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr 8 www.irf.com IRG4PSH71UD Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V 50V 6000µF 100V Vc* D.U.T. RL= 0 - 480V 480V 4 X IC @25°C Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current Test Circuit www.irf.com 9 IRG4PSH71UD Super-247™ (TO-274AA) Package Outline 0.13 [.005] 16.10 [.632] 15.10 [.595] A 5.50 [.216] 4.50 [.178] 0.25 [.010] 13.90 [.547] 13.30 [.524] BA 2X R 3.00 [.118] 2.00 [.079] 2.15 [.084] 1.45 [.058] 1.30 [.051] 0.70 [.028] 20.80 [.818] 19.80 [.780] 4 16.10 [.633] 15.50 [.611] 4 C 1 2 3 B 14.80 [.582] 13.80 [.544] Ø 1.60 [.063] MAX. E E 4.25 [.167] 3.85 [.152] 5.45 [.215] 2X 3X 1.60 [.062] 1.45 [.058] BA 3X 1.30 [.051] 1.10 [.044] 0.25 [.010] Super-247™ (TO-274AA) Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE A8B9 INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE IRFPS37N50A 2.35 [.092] 1.65 [.065] S ECT ION E-E NOT ES: 1. DIMENS IONING AND T OLERANCING PER AS ME Y14.5M-1994. 2. DIMENSIONS ARE SHOWN IN MILLIMET ERS [INCHES ] 3. CONT ROLLING DIMENS ION: MILLIMET ER 4. OUT LINE CONFORMS T O JEDEC OUT LINE T O-274AA LEAD AS SIGNMENT S MOSFET 1 - GAT E 2 - DRAIN 3 - S OURCE 4 - DRAIN IGBT 1 - GAT E 2 - COLLECT OR 3 - EMIT T ER 4 - COLLECT OR PART NUMBER A8B9 0020 TOP DATE CODE (YYWW) YY = YEAR WW = WEEK Super TO-247™ package is not recommended for Surface Mount Application. Notes:  Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) ‚ VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0 Ω (figure 13a) ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%. „ Pulse width 5.0µs, single shot. … Repetitive rating; pulse width limited by maximumjunction temperature. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.5/04 10 www.irf.com
IRG4PSH71UD 价格&库存

很抱歉,暂时无法提供与“IRG4PSH71UD”相匹配的价格&库存,您可以联系我们找货

免费人工找货