PD - 9.1627A
IRG4ZH70UD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
q q
Surface Mountable UltraFast CoPack IGBT
C
q q q q q
UltraFast IGBT optimized for high switching frequencies IGBT co-packaged with HEXFRED™ ultrafast, ultra-soft recovery antiparallel diodes for use in bridge configurations Low Gate Charge Low profile low inductance SMD-10 Package Separated control & Power-connections for easy paralleling Inherently good coplanarity Easy solder inspection and cleaning Highest power density and efficiency available HEXFRED Diodes optimized for performance with IGBTs. Minimized recovery characteristics IGBTs optimized for specific application conditions High input impedance requires low gate drive power Less noise and interference
n-channel
VCES = 1200V VCE(ON)typ = 2.23V
G E(k) E
@VGE = 15V, IC = 42A
Benefits
q q q q q
SMD-10
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range
Max.
1200 78 42 312 312 42 312 ± 20 350 140 -55 to + 150
Units
V
A
V W °C
Thermal Resistance
Parameter
RθJC RθJC RθCS Wt Junction-to-Case - IGBT Junction-to-Case - Diode SMD-10 Case-to-Heatsink (typical), * Weight
Min.
— — — —
Typ.
— — 0.44 6.0(0.21)
Max.
0.36 0.69 — —
Units
°C/W g (oz)
* Assumes device soldered to 3.0 oz. Cu on 3.0mm IMS/Aluminum board, mounted to flat, greased heatsink.
www.irf.com
1
IRG4ZH70UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
Parameter Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage
VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES
Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
Min. 1200 — — — — 3.0 — 30 — — — — —
Typ. Max. Units — — V 1.20 — V/°C 2.23 3.5 2.58 — V 2.15 — — 6.0 -13 — mV/°C 46 — S — 250 µA — 10 mA 2.45 3.7 V 2.40 — — ±100 nA
Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 42A VGE = 15V IC = 78A see figures 2, 5 IC = 42A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 42A VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C IC = 42A see figure 13 IC = 42A, TJ = 150°C VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. 390 47 120 100 28 271 189 3.0 3.67 6.67 37 124 200 435 12.36 2.0 7090 420 56 107 160 10 16 680 1400 250 320 Max. Units Conditions 590 IC = 42A 71 nC VCC = 400V see figure 8 180 VGE = 15V — TJ = 25°C — ns IC = 42A, VCC = 800V 400 VGE = 15V, RG = 5.0Ω 280 Energy losses include "tail" and — diode reverse recovery. — mJ see figures 9, 10, 18 9.8 — TJ = 150°C, see figures 11, 18 — ns IC = 42A, VCC = 800V — VGE = 15V, RG = 5.0Ω — Energy losses include "tail" and — mJ diode reverse recovery. — nH — VGE = 0V — pF VCC = 30V see figure 7 — ƒ = 1.0MHz 160 ns TJ = 25°C see figure 240 TJ = 125°C 14 IF = 42A 15 A TJ = 25°C see figure 24 TJ = 125°C 15 VR = 200V 1020 nC TJ = 25°C see figure 2100 TJ = 125°C 16 di/dt = 200Aµs — A/µs TJ = 25°C see figure — TJ = 125°C 17
Notes: Repetitive rating: VGE = 20V; pulse width limited by maximum junction temperature (figure 20) VCC = 80% (VCES), VGE = 20V, L =10µH, RG = 5.0Ω (figure 19)
Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
2
www.irf.com
IRG4ZH70UD
40
F or b oth:
LOAD CURRENT (A)
30
D uty c y c le : 50 % T J = 12 5° C T sink = 90 °C G a te d riv e a s s pe c ified
P ow er D is s ipation = 44 W S q u a re w a v e :
20
60% of rated voltage
I
10
Id e a l d io d es
0 0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 150 ° C
TJ = 25 ° C TJ = 150 ° C
100
TJ = 25 °C
100
10
10 1
V GE = 15V 20µs PULSE WIDTH
10
1 5 6 7
V CC = 50V 5µs PULSE WIDTH
8 9 10
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
Fig. 3 - Typical Transfer Characteristics
3
IRG4ZH70UD
80
V G E = 15V
4.0
60
VCE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH
Maximum DC Collector Current (A)
3.0
IC = 84 A IC = 42 A
40
2.0
IC = 21 A
20
0 25 50 75 100 125
A
150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature (°C )
TJ , Junction Temperature (° C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
1
Thermal Response (Z thJC )
D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t2 2. Peak T = PDM x Z thJC + TC J 0.0001 0.001 0.01 0.1 1
0.01
0.001 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4 www.irf.com
IRG4ZH70UD
14000 20
12000
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
VCC = 400V I C = 42A
C, Capacitance (pF)
15
10000
Cies
8000
10
6000
Coes
4000
5
2000
Cres
0 1 10 100
0 0 100 200 300 400
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
10.0
Total Switching Losses (mJ)
9.0
Total Switching Losses (mJ)
V CC V GE TJ IC
= 800V = 15V = 25 ° C = 42A
100
RG =5.0Ω 5.0Ohm VGE = 15V VCC = 800V IC = 84 A
IC = 42 A
10
8.0
IC = 21 A
7.0
6.0 0 10 20 30 40
1 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG , Gate Resistance ( Ω ) G
TJ , Junction Temperature (° C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
www.irf.com
Fig. 10 - Typical Switching Losses vs. Junction Temperature
5
IRG4ZH70UD
30
Total Switching Losses (mJ)
20
15
I C , Collector Current (A)
RG TJ VCC 25 VGE
= 5.0Ω 5.0Ohm = 150 ° C = 800V = 15V
1000
VGE = 20V T J = 125 oC
100
10
10
5
SAFE OPERATING AREA
0 20 30 40 50 60 70 80 90 1 1 10 100 1000 10000
I C , Collector Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
1000
Fig. 12 - Turn-Off SOA
Instantaneous forward current - IF (A)
100
TJ = 150°C TJ = 125°C TJ = 25°C
10
1 0.0 2.0 4.0 6.0
Forward Voltage Drop - V FM (V)
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
6 www.irf.com
IRG4ZH70UD
300
100
I F = 84A I F = 42A I F = 21A
I F = 84A I F = 42A I F = 21A
200
trr- (nC)
Irr- ( A)
10
100
VR = 200 V T J = 12 5°C T J = 25 °C
0 100
V R = 2 00 V T J = 12 5 °C T J = 25 °C
di f /dt - (A/µ s)
1000
1 100
1000
d i f /dt - (A /µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
5000
10000
VR = 2 00V T J = 12 5°C T J = 25 °C
4000
I F = 84A
I F = 84A
3000
di (rec) M/dt- (A /µs)
I F = 42A IF = 21A
I F = 42A I F = 21A
Qrr- (nC)
1000
2000
1000
V R = 2 00V T J = 1 2 5 °C T J = 2 5 °C
0 100 1000 100 100 1000
di f /dt - (A/µ s)
di f /dt - (A/µ s)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4ZH70UD
Same t y pe device as D .U.T.
90% V g e +V g e
V ce
80% of Vce
430µF D .U .T.
Ic 10% V ce Ic 5% Ic td (off) tf 90% Ic
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
E off =
∫ Vce Ic dt
t1+5µ S V ce ic dt t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O LT A G E D .U .T . 10% + V g +V g
trr Ic
Q rr =
∫
trr id dt Ic dt tx
tx 10% V c c Vce 10% Ic 90% Ic D U T V O LT A G E AND CURRENT Ipk Ic
10% Irr Vcc
V pk Irr
Vcc
D IO D E R E C O V E R Y W AVEFORMS td(on) tr 5% V c e t2 E on = V c e ieIc dt Vce dt t1 t2 D IO D E R E V E R S E RECOVERY ENERG Y t3 t4
∫
E rec =
∫
t4 V d idIc dt Vc dt t3
t1
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr 8
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr www.irf.com
IRG4ZH70UD
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O LT A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 600 0µ F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4ZH70UD
Case Outline — SMD-10
Dimensions are shown in milimeters
17.30 14.20
4.27 n/c
E(k) G 0.90 5.55
29.00
C
0.90 E E
Recomended footprint
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 3/98
10
www.irf.com