0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG6S330UPBF

IRG6S330UPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRG6S330UPBF - PDP TRENCH IGBT - International Rectifier

  • 数据手册
  • 价格&库存
IRG6S330UPBF 数据手册
PDP TRENCH IGBT PD - 96217A IRG6S330UPbF Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (E PULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package Key Parameters VCE min VCE(ON) typ. @ IC = 70A IRP max @ TC= 25°C TJ max 330 1.80 250 150 V V A °C C G E G C E D2Pak IRG6S330UPbF n-channel G Gate C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Max. ±30 70 40 250 160 63 1.3 -40 to + 150 Units V A c W W/°C °C 300 Thermal Resistance RθJC Junction-to-Case d Parameter Typ. ––– Max. 0.8 Units °C/W www.irf.com 1 09/11/09 IRG6S330UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter BVCES V(BR)ECS ∆ΒVCES/∆TJ Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage Breakdown Voltage Temp. Coefficient Min. Typ. Max. Units Conditions e 330 30 ––– ––– ––– ––– ––– 0.29 1.25 1.43 1.80 2.38 2.10 ––– -12 2.0 10 40 150 ––– ––– 94 86 36 39 32 120 55 37 33 159 95 ––– 943 1086 ––– ––– ––– ––– ––– 2.10 ––– ––– 5.0 V VGE = 0V, ICE = 1 mA V VGE = 0V, ICE = 1 A V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 25A V VGE = 15V, ICE = 40A VGE = 15V, ICE = 70A VCE(on) Static Collector-to-Emitter Voltage ––– ––– 2.6 ––– ––– ––– ––– VGE = 15V, ICE VGE = 15V, ICE = 70A, TJ = 150°C V VCE = VGE, ICE = 500µA e e e = 120A e VGE(th) ∆VGE(th)/∆TJ ICES e Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst EPULSE Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time Shoot Through Blocking Time Energy per Pulse ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 100 ––– ––– ––– mV/°C VCE = 330V, VGE = 0V 20 VCE = 330V, VGE = 0V, TJ = 100°C ––– µA VCE = 330V, VGE = 0V, TJ = 125°C 200 VCE = 330V, VGE = 0V, TJ = 150°C ––– 100 -100 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ns µJ ns nA S nC VGE = 30V VGE = -30V VCE = 25V, ICE = 25A VCE = 200V, IC = 25A, VGE = 15V IC = 25A, VCC = 196V ns RG = 10Ω , L=200µH, LS= 150nH TJ = 25°C IC = 25A, VCC = 196V RG = 10Ω , L=200µH, LS= 150nH TJ = 150°C VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V e ESD Cies Coes Cres LC LE Human Body Model Machine Model Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance Internal Emitter Inductance ––– ––– ––– ––– ––– VCC = 240V, RG= 5.1Ω, TJ = 100°C Class 2 (Per JEDEC standard JESD22-A114) Class B (Per EIA/JEDEC standard EIA/JESD22-A115) VGE = 0V 2275 ––– 108 ––– pF VCE = 30V 75 4.5 7.5 ––– ––– nH ––– ƒ = 1.0MHz, Between lead, 6mm (0.25in.) from package and center of die contact See Fig.13 Notes:  Half sine wave with duty cycle = 0.05, ton=2µsec. ‚ Rθ is measured at TJ of approximately 90°C. ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRG6S330UPbF 500 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V ICE (A) 500 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 400 400 ICE (A) 300 300 200 200 100 100 0 0 2 4 6 8 10 0 0 2 4 6 8 10 VCE (V) VCE (V) Fig 1. Typical Output Characteristics @ 25°C 500 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V Fig 2. Typical Output Characteristics @ 75°C 500 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 400 400 ICE (A) 300 200 ICE (A) 300 200 100 100 0 0 2 4 6 8 10 0 0 2 4 6 8 10 VCE (V) VCE (V) Fig 3. Typical Output Characteristics @ 125°C 500 Fig 4. Typical Output Characteristics @ 150°C 25 IC = 25A 20 400 TJ = 150°C T J = 25°C VCE (V) ICE (A) 300 15 TJ = 25°C 10 TJ = 150°C 200 100 5 0 0 2 4 6 8 10 12 14 16 18 VGE (V) 0 5 10 VGE (V) 15 20 Fig 5. Typical Transfer Characteristics Fig 6. VCE(ON) vs. Gate Voltage www.irf.com 3 IRG6S330UPbF 80 70 300 IC, Collector Current (A) 60 50 40 30 20 10 0 0 25 50 75 100 125 150 Repetitive Peak Current (A) 200 100 ton= 2µs Duty cycle = 0.1 Half Sine Wave 0 25 50 75 100 125 150 Case Temperature (°C) T C, Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature 1100 1050 1000 V CC = 240V L = 220nH C = variable 100°C Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1100 1000 Energy per Pulse (µJ) L = 220nH C = 0.4µF 100°C Energy per Pulse (µJ) 950 900 850 800 750 700 650 600 150 160 170 180 190 200 210 220 230 IC, Peak Collector Current (A) 25°C 900 800 700 600 500 195 200 205 210 215 220 225 230 235 240 VCC, Collector-to-Supply Voltage (V) 25°C Fig 9. Typical EPULSE vs. Collector Current 1400 V CC = 240V 1200 Energy per Pulse (µJ) Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage 1000 L = 220nH t = 1µs half sine C= 0.4µF 1000 C= 0.3µF 800 600 400 200 25 50 75 100 125 150 TJ, Temperature (ºC) C= 0.2µF 100 IC (A) 10 µs 100 µs 10 1ms 1 1 10 V CE (V) 100 1000 Fig 11. EPULSE vs. Temperature Fig 12. Forrward Bias Safe Operating Area 4 www.irf.com IRG6S330UPbF 100000 VGE, Gate-to-Emitter Voltage (V) VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C res = C gc C oes = C ce + Cgc 16 14 12 10 8 6 4 2 0 IC = 25A V CES = 240V V CES = 150V V CES = 60V 10000 Capacitance (pF) 1000 Cies 100 Coes Cres 10 0 50 100 150 200 0 20 40 60 80 100 VCE, Collector-toEmitter-Voltage(V) Q G, Total Gate Charge (nC) Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage 1 D = 0.50 Thermal Response ( ZthJC ) 0.20 0.1 0.10 0.05 0.02 0.01 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τC τ1 τ2 τ3 τ3 τ Ri (°C/W) τι (sec) 0.01 Ci= τ i/Ri Ci= τi/Ri 0.084697 0.000038 0.374206 0.001255 0.341867 0.013676 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRG6S330UPbF A RG DRIVER L C PULSE A VCC B PULSE B RG Ipulse DUT tST Fig 16a. tst and EPULSE Test Circuit Fig 16b. tst Test Waveforms VCE Energy IC Current 0 L DUT 1K VCC Fig 16c. EPULSE Test Waveforms Fig. 17 - Gate Charge Circuit (turn-off) 6 www.irf.com IRG6S330UPbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ A$"T Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `@6SÃÃ2Ã! X@@FÃ! 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ 7 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com IRG6S330UPbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/2009 8 www.irf.com
IRG6S330UPBF 价格&库存

很抱歉,暂时无法提供与“IRG6S330UPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货