PD - 97411
PDP TRENCH IGBT
Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package
IRG7I313UPbF
Key Parameters
330 1.35 160 150 V V A °C
VCE min VCE(ON) typ. @ IC = 20A IRP max @ TC= 25°C TJ max
C
G E
G
C
E
n-channel
G G ate C C olle ctor
TO-220 Full-Pak IRG7I313UPbF
E Em itter
Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications.
Absolute Maximum Ratings
Parameter
VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 1 5V Continuous Collector, VGE @ 15V Repetitive Peak Current Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw
Max.
±30 20 10 160 34 14 0.27 -40 to + 150
Units
V A W W/°C °C
c
300 10 lbf·in (1.1 N·m)
Thermal Resistance
RθJC RθCS RθJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
d
Parameter
Typ.
––– 0.50
—
Max.
3.7
—
Units
°C/W g
65
—
2.0
www.irf.com
1
08/05/09
IRG7I313UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES ∆ΒVCES/∆TJ Collector-to-Emitter Breakdown Voltage Breakdown Voltage Temp. Coefficient
Min. Typ. Max. Units
330 ––– ––– ––– ––– 0.4 1.21 1.35 1.75 2.14 1.41 ––– -10 1.0 25 75 ––– ––– 47 33 12 11 13 75 68 11 14 86 190 ––– 480 570 ––– ––– 1.45 ––– ––– ––– ––– 4.7 10 150 ––– 100 -100 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ns µJ ns nA S nC V
Conditions
VGE = 0V, ICE = 250µA
V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 12A VGE = 15V, ICE = 20A V VGE = 15V, ICE VGE = 15V, ICE VGE = 15V, ICE = 20A, TJ = 150°C V VCE = VGE, ICE = 1.0mA VCE = 330V, VGE = 0V µA VCE = 330V, VGE = 0V, TJ = 125°C VCE = 330V, VGE = 0V, TJ = 150°C VGE = 30V VGE = -30V VCE = 25V, ICE = 12A VCE = 240V, IC = 12A, VGE = 15V IC = 12A, VCC = 196V RG = 10Ω, L=210µH TJ = 25°C IC = 12A, VCC = 196V ns RG = 10Ω, L=200µH, LS= 150nH TJ = 150°C VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.20µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.20µF, VGE = 15V
VCE(on)
Static Collector-to-Emitter Voltage ––– ––– 2.2 ––– ––– –––
e e = 40A e = 60A e
VGE(th) ∆VGE(th)/∆TJ ICES
e
Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current
––– mV/°C
IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst EPULSE
Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time Shoot Through Blocking Time Energy per Pulse
––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 100 ––– –––
e
Human Body Model ESD Machine Model Cies Coes Cres LC LE Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance Internal Emitter Inductance ––– ––– ––– ––– –––
VCC = 240V, RG= 5.1Ω, TJ = 100°C Class 1C (Per JEDEC standard JESD22-A114) Class B (Per EIA/JEDEC standard EIA/JESD22-A115) VGE = 0V 880 ––– 47 ––– pF VCE = 30V 26 4.5 7.5 ––– ––– nH ––– ƒ = 1.0MHz Between lead, 6mm (0.25in.) from package and center of die contact
Notes: Half sine wave with duty cycle = 0.05, ton=2µsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRG7I313UPbF
200 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 200 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 160 160
ICE (A)
80
ICE (A)
120
VGE = 8.0V VGE = 6.0V
120
VGE = 8.0V VGE = 6.0V
80
40
40
0 0 2 4 6 VCE (V) 8 10
0 0 2 4 6 VCE (V) 8 10
Fig 1. Typical Output Characteristics @ 25°C
200 VGE = 18V VGE = 15V VGE = 12V VGE = 10V
Fig 2. Typical Output Characteristics @ 75°C
200 VGE = 18V VGE = 15V VGE = 12V VGE = 10V
160
160
ICE (A)
80
ICE (A)
120
VGE = 8.0V VGE = 6.0V
120
VGE = 8.0V VGE = 6.0V
80
40
40
0 0 2 4 6 VCE (V) 8 10
0 0 2 4 6 VCE (V) 8 10
Fig 3. Typical Output Characteristics @ 125°C
200
Fig 4. Typical Output Characteristics @ 150°C
14 IC = 12A 12 10
VCE (V)
160
ICE (A)
120 T J = 25°C 80
8 6 4
TJ = 25°C TJ = 150°C
T J = 150°C
40
2 0
2 4 6 8 10 12 14 16
0 V GE (V)
0
5
10 V GE (V)
15
20
Fig 5. Typical Transfer Characteristics
Fig 6. VCE(ON) vs. Gate Voltage
www.irf.com
3
IRG7I313UPbF
20
160 140 ton= 2µs Duty cycle = 0.05 Half Sine Wave
15
Repetitive Peak Current (A)
25 50 75 100 125 150
120 100 80 60 40 20
IC (A)
10
5
0
0 25 50 75 100 125 150 Case Temperature (°C)
T C (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
1300 1200 VCC = 240V L = 220nH C = variable 100°C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1300 1200 L = 220nH C = 0.4µF 100°C
Energy per Pulse (µJ)
Energy per Pulse (µJ)
1100 1000 900 800 700 600 500 400
1100 1000 900 800 700 600
25°C
25°C
160
170
180
190
200
210
220
230
195 200 205 210 215 220 225 230 235 240 VCE, Collector-to-Emitter Voltage (V)
IC, Peak Collector Current (A)
Fig 9. Typical EPULSE vs. Collector Current
1600 VCC = 240V 1400
Energy per Pulse (µJ)
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
100
L = 220nH t = 1µs half sine
C= 0.4µF
10µsec 100µsec 10
IC (A)
1200 1000 800 600 400 25 50 75 100 125 150 TJ, Temperature (ºC) C= 0.2µF
1msec
C= 0.3µF
1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 10 VCE (V) 100 1000
Fig 11. EPULSE vs. Temperature
Fig 12. Forrward Bias Safe Operating Area
4
www.irf.com
IRG7I313UPbF
10000
20
VGE, Gate-to-Source Voltage (V)
ID= 12A VDS = 240V VDS = 150V VDS = 60V
16
Capacitance (pF)
1000
Cies
12
8
100
Coes Cres
10 0 100 200
4
0 0 10 20 30 40 QG Total Gate Charge (nC)
VCE (V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
10
Thermal Response ( Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4
Ri (°C/W)
0.0433 1.3307 1.5908 0.7282
0.000006 0.000170 0.001311 0.006923
τi (sec)
0.01
Ci= τi/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1
0.001 1E-006
1E-005
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG7I313UPbF
A
RG DRIVER L
C
PULSE A
VCC
B
PULSE B
Ipulse RG DUT
tST
Fig 16a. tst and EPULSE Test Circuit
Fig 16b. tst Test Waveforms
VCE
Energy IC Current
0
L DUT 1K VCC
Fig 16c. EPULSE Test Waveforms
Fig. 17 - Gate Charge Circuit (turn-off)
6
www.irf.com
IRG7I313UPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSAD'#BÃ XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã"#"! 6TT@H7G@9ÃPIÃXXÃ!#Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅFÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
DSAD'#B !#F Ã"#ÃÃÃÃÃÃÃÃÃ"!
Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ
96U@Ã8P9@ `@6SÃ Ã2Ã! X@@FÃ!# GDI@ÃF
TO-220 Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/2009
www.irf.com
7