0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG7PH30K10DPBF

IRG7PH30K10DPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRG7PH30K10DPBF - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - Internation...

  • 数据手册
  • 价格&库存
IRG7PH30K10DPBF 数据手册
PD - 97403 IRG7PH30K10DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses 10 µS short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package C VCES = 1200V IC = 16A, TC = 100°C G E tSC ≥ 10µs, TJ(max) = 150°C n-channel C VCE(on) typ. = 2.05V Benefits • High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation E C G TO-247AC G Gate C Collector E Emitter Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C INOMINAL ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Nominal Current Pulse Collector Current, Vge = 15V Clamped Inductive Load Current, Vge = 20V Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) Max. 1200 30 16 9.0 27 36 30 16 36 ±30 180 71 -55 to +150 Units V c A d Continuous Gate-to-Emitter Voltage V W °C Thermal Resistance RθJC (IGBT) RθJC (Diode) RθCS RθJA f Thermal Resistance Junction-to-Case-(each Diode) f Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Parameter Min. ––– ––– ––– ––– Typ. ––– ––– 0.24 40 Max. 0.70 1.44 ––– ––– Units °C/W 1 www.irf.com 08/14/09 IRG7PH30K10DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ Min. 1200 — — — 5.0 — — — — — — — Typ. — 1.11 2.05 2.56 — -15 6.2 1.0 400 2.0 2.1 — Max. Units — — 2.35 — 7.5 — — 25 — 3.0 — ±100 nA V V Conditions VGE = 0V, IC = 250µA Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage e Ref.Fig CT6 CT6 5,6,7 9,10,11 9,10 11,12 VCE(on) VGE(th) ∆VGE(th)/∆TJ Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 9.0A, VGE = 15V, TJ = 25°C V IC = 9.0A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 400µA mV/°C VCE = VGE, IC = 400µA (25°C - 150°C) S VCE = 50V, IC = 9.0A, PW = 80µs µA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C IF = 9.0A IF = 9.0A, TJ = 150°C VGE = ±30V gfe ICES VFM IGES 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Min. — — — — — — — — — — — — — — — — — — — — Typ. 45 8.7 20 530 380 910 14 24 110 38 810 680 1490 11 23 130 260 1070 63 26 Max. Units 68 13 30 760 600 1360 31 41 130 56 — — — — — — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 9.0A VGE = 15V VCC = 600V Conditions Ref.Fig 24 CT1 IC = 9.0A, VCC = 600V, VGE = 15V RG = 22Ω, L = 1.0mH, LS = 150nH, TJ = 25°C Energy losses include tail & diode reverse recovery CT4 IC = 9.0A, VCC = 600V, VGE = 15V RG = 22Ω, L = 1.0mH, LS = 150nH, TJ = 25°C CT4 IC = 9.0A, VCC = 600V, VGE=15V RG=22Ω, L=1.0mH, LS=150nH, TJ = 150°C IC = 9.0A, VCC = 600V, VGE = 15V RG = 22Ω, L = 1.0mH, LS = 150nH TJ = 150°C eà 13,15 CT4 WF1, WF2 14,16 CT4 WF1 WF2 23 Energy losses include tail & diode reverse recovery f = 1.0Mhz TJ = 150°C, IC = 36A VCC = 960V, Vp =1200V Rg = 22Ω, VGE = +20V to 0V 4 CT2 FULL SQUARE 10 — — — — 710 140 12 — — — — µs µJ ns A TJ = 150°C, VCC = 600V, Vp =1200V Rg = 22Ω, VGE = +15V to 0V TJ = 150°C VCC = 600V, IF = 9.0A VGE = 15V, Rg = 20Ω , L =1.0mH, Ls = 150nH 22, CT3 WF4 17,18,19 20,21 WF3 Notes:  VCC = 80% (VCES), VGE = 20V, L = 36µH, RG = 33Ω. ‚ Pulse width limited by max. junction temperature. ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely. „ Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRG7PH30K10DPbF 30 25 200 150 20 15 10 5 0 25 50 75 100 125 150 Ptot (W) IC (A) 100 50 0 0 20 40 60 80 100 120 140 160 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature 100 Fig. 2 - Power Dissipation vs. Case Temperature 100 10µsec 10 100µsec IC (A) IC (A) 1000 10000 1msec 10 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 10 DC 1 100 VCE (V) 10 100 VCE (V) 1000 10000 Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 50 Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE = 20V VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 40 ICE (A) ICE (A) 30 30 20 20 10 10 0 0 2 4 6 8 10 VCE (V) 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 3 IRG7PH30K10DPbF 50 50 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 -40°C 25°C 150°C ICE (A) 30 30 20 IF (A) 20 10 0 10 0.0 10 0 0 2 4 6 8 VCE (V) 1.0 2.0 3.0 4.0 5.0 VF (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 12 10 8 VCE (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 12 10 8 VCE (V) 6 4 2 0 5 10 VGE (V) ICE = 4.5A ICE = 9.0A ICE = 18A 6 4 2 0 ICE = 4.5A ICE = 9.0A ICE = 18A 15 20 5 10 VGE (V) 15 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C 12 10 8 VCE (V) ICE, Collector-to-Emitter Current (A) 40 Fig. 10 - Typical VCE vs. VGE TJ = 25°C 30 6 4 2 0 5 10 VGE (V) ICE = 4.5A ICE = 9.0A ICE = 18A 20 T J = 25°C T J = 150°C 10 0 15 20 4 6 8 10 12 14 16 VGE, Gate-to-Emitter Voltage (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C Fig. 12 - Typ. Transfer Characteristics VCE = 50V 4 www.irf.com IRG7PH30K10DPbF 2000 1000 tF Swiching Time (ns) 1600 EON Energy (µJ) 100 tdOFF 1200 800 EOFF 400 tR 10 tdON 0 5 10 IC (A) 15 20 1 0 5 10 IC (A) 15 20 Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 1.0mH; VCE = 600V, RG = 22Ω; VGE = 15V 1600 1400 EON 1200 Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 1.0mH; VCE = 600V, RG = 22Ω; VGE = 15V 1000 tF Swiching Time (ns) 100 Energy (µJ) td OFF tR 1000 800 600 400 0 20 40 60 80 100 RG ( Ω) EOFF 10 tdON 1 0 20 40 60 80 100 RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 1.0mH; VCE = 600V, ICE = 9.0A; VGE = 15V 18 16 14 RG = 5.0Ω Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 1.0mH; VCE = 600V, ICE = 9.0A; VGE = 15V 18 16 RG = 10Ω IRR (A) 12 RG = 20Ω 10 8 6 4 6 8 10 12 IF (A) 14 16 18 20 RG = 47Ω IRR (A) 14 12 10 8 0 10 20 30 40 50 RG ( Ω) Fig. 17 - Typ. Diode IRR vs. IF TJ = 150°C Fig. 18 - Typ. Diode IRR vs. RG TJ = 150°C www.irf.com 5 IRG7PH30K10DPbF 18 3000 16 2500 QRR (nC) 18A 20Ω 10Ω 5.0Ω IRR (A) 14 2000 47Ω 12 9.0A 1500 10 8 0 100 200 diF /dt (A/µs) 300 400 1000 0 100 4.5A 200 diF /dt (A/µs) 300 400 Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 600V; VGE = 15V; IF = 9.0A; TJ = 150°C 1200 RG = 5.0 Ω 1000 RG = 10 Ω RG = 20 Ω Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 600V; VGE = 15V; TJ = 150°C 48 60 40 Tsc 50 Energy (µJ) 800 Time (µs) RG = 47 Ω 32 Isc 24 40 Current (A) 30 600 16 20 400 0 5 10 IF (A) 15 20 8 8 10 12 VGE (V) 14 16 10 Fig. 21 - Typ. Diode ERR vs. IF TJ = 150°C 10000 VGE, Gate-to-Emitter Voltage (V) 16 14 12 10 8 6 4 2 0 Fig. 22 - VGE vs. Short Circuit Time VCC = 600V; TC = 150°C VCES = 600V VCES = 400V 1000 Capacitance (pF) Cies 100 Coes 10 Cres 1 0 100 200 300 400 500 VCE (V) 0 10 20 30 40 50 Q G, Total Gate Charge (nC) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 24 - Typical Gate Charge vs. VGE ICE = 9.0A; L = 600µH 6 www.irf.com IRG7PH30K10DPbF 1 D = 0.50 Thermal Response ( Z thJC ) 0.20 0.1 0.10 0.05 0.02 0.01 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4 Ri (°C/W) 0.0107 0.1816 0.3180 0.1910 0.000005 0.000099 0.001305 0.009113 τi (sec) 0.01 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ4 Ri (°C/W) 0.0103 0.4761 0.5749 0.3390 0.000005 0.000451 0.001910 0.012847 τi (sec) τ2 τ3 τ4 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 0.001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRG7PH30K10DPbF L L 0 DUT 1K VCC 80 V + - DUT Rg VCC Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC DUT Rg VCC -5V DUT / DRIVER VCC SCSOA Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= V CC ICM 100K D1 22K C sens e DUT Rg VCC G force DUT 0.0075µF E sense E force Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - BVCES Filter Circuit 8 www.irf.com IRG7PH30K10DPbF 900 800 700 600 500 VCE (V) 400 300 200 100 0 -100 -5 0 Eoff Loss 5% V CE 5% ICE 90% ICE 18 tf 16 14 12 900 800 700 600 500 VCE (V) ICE (A) 90% test current TEST CURRENT 45 40 tr 35 30 25 20 15 current 10 8 6 4 2 0 -2 10 400 300 200 10% test 100 0 -100 -1.8 -0.8 Eon Loss 5% V CE 10 5 0 -5 0.2 1.2 2.2 3.2 time (µs) 5 time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 100 0 -100 -200 -300 VF (V) -400 -500 -600 -700 -800 -900 -2.50 0.00 Peak IRR 10% Peak IRR 12.5 10 QRR tRR 7.5 5 800 700 600 500 Vce (V) IF (A) 80 VCE ICE 70 60 50 Ice (A) 9 2.5 0 -2.5 -5 -7.5 -10 -12.5 5.00 400 300 200 100 0 -100 -5 0 5 Time (uS) Fig. WF4 - Typ. S.C. Waveform @ TJ = 150°C using Fig. CT.3 40 30 20 10 0 -10 10 2.50 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com I CE (A) IRG7PH30K10DPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSAQ@"à XDUCÃ6TT@H7G`à GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S ,5)3( à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$& 96U@Ã8P9@ `@6Sà Ã2Ã! X@@FÃ"$ GDI@ÃC TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/2009 10 www.irf.com
IRG7PH30K10DPBF 价格&库存

很抱歉,暂时无法提供与“IRG7PH30K10DPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货