0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG7PH30K10PBF

IRG7PH30K10PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRG7PH30K10PBF - INSULATED GATE BIPOLAR TRANSISTOR - International Rectifier

  • 数据手册
  • 价格&库存
IRG7PH30K10PBF 数据手册
PD - 96156A IRG7PH30K10PbF INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction Temperature 175 °C 10 µS short Circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature Co-Efficient Tight Parameter Distribution Lead Free Package C VCES = 1200V IC = 23A, TC = 100°C G E tSC ≥ 10µs, TJ(max) =175°C n-channel C VCE(on) typ. = 2.05V Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation E C G TO-247AC G Gate C Collector E Emitter Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C INOMINAL ICM ILM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Nominal Current Pulse Collector Current Vge = 15V Clamped Inductive Load Current Vge = 20V Continuous Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) Max. 1200 33 23 9.0 Units V A c 27 36 ±30 210 110 -55 to +175 °C V W Thermal Resistance Parameter RθJC (IGBT) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) f Min. ––– ––– ––– Typ. ––– 0.24 40 Max. 0.70 ––– ––– Units °C/W Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) 1 www.irf.com 06/23/09 IRG7PH30K10PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ Min. 1200 — — — — 5.0 — — — — — Typ. — 1.27 2.05 2.56 2.65 — -16 6.2 1.0 400 — Max. Units — — 2.35 — — 7.5 — — 25 — ±100 V Conditions VGE = 0V, IC = 250µA Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage e Ref.Fig V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 9.0A, VGE = 15V, TJ = 25°C V IC = 9.0A, VGE = 15V, TJ IC = 9.0A, VGE = 15V, TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Gate-to-Emitter Leakage Current e d = 150°C d = 175°C d CT6 CT6 5,6,7 8,9,10 gfe ICES IGES V VCE = VGE, IC = 400µA mV/°C VCE = VGE, IC = 400µA (25°C - 175°C) S VCE = 50V, IC = 9.0A, PW = 80µs µA nA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 175°C VGE = ±30V 8,9 10,11 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Min. — — — — — — — — — — — — — — — — — — — — Typ. 45 8.7 20 530 380 910 14 24 110 38 850 750 1600 12 23 130 270 1070 63 26 Max. Units 68 13 30 760 600 1360 31 41 130 56 — — — — — — — — — — pF VGE = 0V ns µJ ns µJ nC IC = 9.0A d Conditions Ref.Fig 18 CT1 VGE = 15V VCC = 600V IC = 9.0A, VCC = 600V, VGE = 15V RG = 22Ω , L = 1000µH, LS = 150nH,TJ = 25°C Energy losses include tail & diode reverse recovery d CT4 IC = 9.0A, VCC = 600V, VGE = 15V RG = 22Ω , L = 1000µH, LS = 150nH,TJ = 25°C Ãd CT4 IC = 9.0A, VCC = 600V, VGE=15V RG=22Ω , L=1000µH, LS=150nH, TJ = 175°C Energy losses include tail & diode reverse recovery Ãd d 12,14 CT4 WF1, WF2 13,15 CT4 WF1 WF2 17 IC = 9.0A, VCC = 600V, VGE=15V TJ = 175°C RG = 22Ω , L = 1000µH, LS = 150nH VCC = 30V f = 1.0Mhz TJ = 175°C, IC = 36A VCC = 960V, Vp =1200V Rg = 10Ω , VGE = +20V to 0V, TJ =175°C 4 CT2 FULL SQUARE 10 — — µs VCC = 600V, Vp =1200V ,TJ = 150°C, Rg = 22Ω , VGE = +15V to 0V 16, CT3 WF4 Notes:  VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 51Ω. ‚ Pulse width ≤ 400µs; duty cycle ≤ 2%. ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely. „ Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRG7PH30K10PbF 35 30 25 20 15 10 5 0 25 50 75 100 T C (°C) 125 150 175 225 200 175 150 IC (A) Ptot (W) 125 100 75 50 25 0 0 25 50 75 100 125 150 175 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature 100 Fig. 2 - Power Dissipation vs. Case Temperature 100 10µsec 10 IC (A) 100µsec 1msec IC (A) DC 10 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100 VCE (V) 1000 10000 1 10 100 VCE (V) 1000 10000 Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V 40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =20V 40 35 30 25 ICE (A) VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 20 15 10 5 0 0 2 4 6 8 10 12 14 16 18 20 15 10 5 0 0 2 4 6 8 10 12 14 16 18 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs VCE (V) www.irf.com 3 IRG7PH30K10PbF 40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VCE (V) 18 16 14 12 10 8 6 4 2 0 ICE = 4.5A ICE = 18A ICE = 9.0A ICE (A) 20 15 10 5 0 0 2 4 6 8 10 12 14 16 18 5 10 VGE (V) 15 20 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 18 16 14 12 14 12 10 Fig. 8 - Typical VCE vs. VGE TJ = -40°C VCE (V) 10 8 6 4 2 0 5 10 VGE (V) VCE (V) ICE = 4.5A ICE = 9.0A ICE = 18A 8 6 4 2 0 ICE = 4.5A ICE = 9.0A ICE = 18A 15 20 5 10 VGE (V) 15 20 Fig. 9 - Typical VCE vs. VGE TJ = 25°C 40 35 30 1600 2000 Fig. 10 - Typical VCE vs. VGE TJ = 175°C EON Energy (µJ) 25 ICE (A) 1200 EOFF 20 15 10 5 0 0 T J = 25°C T J = 175°C 800 400 0 5 VGE (V) 10 15 5 10 IC (A) 15 20 Fig. 11- Typ. Transfer Characteristics VCE = 50V; tp = 10µs Fig. 12 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22Ω; VGE = 15V 4 www.irf.com IRG7PH30K10PbF 1000 1000 EON tF Swiching Time (ns) Energy (µJ) 900 100 tdOFF tR 800 700 tdON 600 EOFF 10 0 5 10 IC (A) 15 20 0 10 20 30 40 50 RG ( Ω) Fig. 13 - Typ. Switching Time vs. IC TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22Ω; VGE = 15V 1000 tF Fig. 14 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V 48 60 40 Swiching Time (ns) 50 Tsc 100 Time (µs) tdOFF tR 10 tdON 32 Isc 24 40 Current (A) 30 16 20 1 0 10 20 30 40 50 RG ( Ω) 8 8 10 12 VGE (V) 14 16 10 Fig. 15 - Typ. Switching Time vs. RG TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V 10000 VGE, Gate-to-Emitter Voltage (V) Fig. 16 - VGE vs. Short Circuit Time VCC = 600V; TC = 150°C 16 14 12 10 8 6 4 2 0 VCES = 600V VCES = 400V 1000 Capacitance (pF) Cies 100 Coes 10 Cres 1 0 100 200 300 400 500 VCE (V) 0 10 20 30 40 50 Q G, Total Gate Charge (nC) Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 18- Typical Gate Charge vs. VGE ICE = 9.0A; L = 1.0mH www.irf.com 5 IRG7PH30K10PbF 1 D = 0.50 Thermal Response ( Z thJC ) 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4 Ri (°C/W) 0.01068 0.18156 0.31802 0.19105 0.000005 0.000099 0.001305 0.009113 τi (sec) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 0.001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case 6 www.irf.com IRG7PH30K10PbF L L 0 DUT 1K VCC 80 V + - DUT Rg Vclamped Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit DIODE CLAMP L VCC Rg DUT / DRIVER VCC Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R = VCC ICM C f rce o 100K D1 22K C sense DUT Rg VCC Gf orce DUT E sense 0.0075µ E f rce o Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - BVCES Filter Circuit www.irf.com 7 IRG7PH30K10PbF 900 800 700 600 500 VCE (V) 400 300 200 100 0 -100 -5 0 Eoff Loss 5% V CE 5% ICE 90% ICE 18 tf 16 14 12 10 700 600 500 400 V CE (V) ICE (A) 35 30 tr 25 20 15 10% test c urrent 8 6 4 2 0 -2 10 5 time(µs) 300 200 100 0 Eon Loss 10 5% V CE 5 0 -5 -100 -1.8 -0.8 0.2 1.2 2.2 3.2 time (µs) Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 800 700 600 500 Vce (V) 400 300 200 100 0 -100 -5 0 5 Time (uS) Fig. WF4 - Typ. S.C. Waveform @ TJ = 150°C using Fig. CT.3 80 VCE ICE 70 60 50 Ice (A) 40 30 20 10 0 -10 10 8 www.irf.com ICE (A) 90% test current TEST CURRENT IRG7PH30K10PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSAQ@"à XDUCÃ6TT@H7G`à GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S ,5)3( à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$& 96U@Ã8P9@ `@6Sà Ã2Ã! X@@FÃ"$ GDI@ÃC TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/2009 www.irf.com 9
IRG7PH30K10PBF 价格&库存

很抱歉,暂时无法提供与“IRG7PH30K10PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货