PD - 96156A
IRG7PH30K10PbF
INSULATED GATE BIPOLAR TRANSISTOR Features
• • • • • • • • • Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction Temperature 175 °C 10 µS short Circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature Co-Efficient Tight Parameter Distribution Lead Free Package
C
VCES = 1200V IC = 23A, TC = 100°C
G E
tSC ≥ 10µs, TJ(max) =175°C
n-channel
C
VCE(on) typ. = 2.05V
Benefits
• High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation
E C G TO-247AC
G Gate
C Collector
E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C INOMINAL ICM ILM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Nominal Current Pulse Collector Current Vge = 15V Clamped Inductive Load Current Vge = 20V Continuous Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Max.
1200 33 23 9.0
Units
V
A
c
27 36 ±30 210 110 -55 to +175 °C V W
Thermal Resistance
Parameter
RθJC (IGBT) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT)
f
Min.
––– ––– –––
Typ.
––– 0.24 40
Max.
0.70 ––– –––
Units
°C/W
Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
1
www.irf.com
06/23/09
IRG7PH30K10PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
Min.
1200 — — — — 5.0 — — — — —
Typ.
— 1.27 2.05 2.56 2.65 — -16 6.2 1.0 400 —
Max. Units
— — 2.35 — — 7.5 — — 25 — ±100 V
Conditions
VGE = 0V, IC = 250µA
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
e
Ref.Fig
V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 9.0A, VGE = 15V, TJ = 25°C V IC = 9.0A, VGE = 15V, TJ IC = 9.0A, VGE = 15V, TJ
VCE(on) VGE(th)
∆VGE(th)/∆TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Gate-to-Emitter Leakage Current
e d = 150°C d = 175°C d
CT6 CT6 5,6,7 8,9,10
gfe ICES IGES
V VCE = VGE, IC = 400µA mV/°C VCE = VGE, IC = 400µA (25°C - 175°C) S VCE = 50V, IC = 9.0A, PW = 80µs µA nA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 175°C VGE = ±30V
8,9 10,11
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area
Min.
— — — — — — — — — — — — — — — — — — — —
Typ.
45 8.7 20 530 380 910 14 24 110 38 850 750 1600 12 23 130 270 1070 63 26
Max. Units
68 13 30 760 600 1360 31 41 130 56 — — — — — — — — — — pF VGE = 0V ns µJ ns µJ nC IC = 9.0A
d
Conditions
Ref.Fig 18 CT1
VGE = 15V VCC = 600V IC = 9.0A, VCC = 600V, VGE = 15V
RG = 22Ω , L = 1000µH, LS = 150nH,TJ = 25°C
Energy losses include tail & diode reverse recovery
d
CT4
IC = 9.0A, VCC = 600V, VGE = 15V
RG = 22Ω , L = 1000µH, LS = 150nH,TJ = 25°C
Ãd
CT4
IC = 9.0A, VCC = 600V, VGE=15V
RG=22Ω , L=1000µH, LS=150nH, TJ = 175°C
Energy losses include tail & diode reverse recovery
Ãd d
12,14 CT4 WF1, WF2 13,15 CT4 WF1 WF2 17
IC = 9.0A, VCC = 600V, VGE=15V TJ = 175°C
RG = 22Ω , L = 1000µH, LS = 150nH
VCC = 30V f = 1.0Mhz TJ = 175°C, IC = 36A VCC = 960V, Vp =1200V Rg = 10Ω , VGE = +20V to 0V, TJ =175°C
4 CT2
FULL SQUARE 10 — — µs
VCC = 600V, Vp =1200V ,TJ = 150°C, Rg = 22Ω , VGE = +15V to 0V
16, CT3 WF4
Notes: VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 51Ω. Pulse width ≤ 400µs; duty cycle ≤ 2%. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C.
2
www.irf.com
IRG7PH30K10PbF
35 30 25 20 15 10 5 0 25 50 75 100 T C (°C) 125 150 175
225 200 175 150
IC (A)
Ptot (W)
125 100 75 50 25 0 0 25 50 75 100 125 150 175 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
Fig. 2 - Power Dissipation vs. Case Temperature
100
10µsec
10
IC (A)
100µsec 1msec
IC (A)
DC
10
1
Tc = 25°C Tj = 175°C Single Pulse
0.1 1 10 100 VCE (V) 1000 10000
1 10 100 VCE (V) 1000 10000
Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V
40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =20V
40 35 30 25
ICE (A)
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
20 15 10 5 0 0 2 4 6 8 10 12 14 16 18
20 15 10 5 0 0 2 4 6 8 10 12 14 16 18
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
VCE (V)
www.irf.com
3
IRG7PH30K10PbF
40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
VCE (V)
18 16 14 12 10 8 6 4 2 0 ICE = 4.5A ICE = 18A ICE = 9.0A
ICE (A)
20 15 10 5 0 0 2 4 6 8 10 12 14 16 18
5
10 VGE (V)
15
20
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs
18 16 14 12 14 12 10
Fig. 8 - Typical VCE vs. VGE TJ = -40°C
VCE (V)
10 8 6 4 2 0 5 10 VGE (V)
VCE (V)
ICE = 4.5A ICE = 9.0A ICE = 18A
8 6 4 2 0
ICE = 4.5A ICE = 9.0A ICE = 18A
15
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = 25°C
40 35 30 1600 2000
Fig. 10 - Typical VCE vs. VGE TJ = 175°C
EON
Energy (µJ)
25
ICE (A)
1200 EOFF
20 15 10 5 0 0
T J = 25°C T J = 175°C
800
400
0 5 VGE (V) 10 15 5 10 IC (A) 15 20
Fig. 11- Typ. Transfer Characteristics VCE = 50V; tp = 10µs
Fig. 12 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22Ω; VGE = 15V
4
www.irf.com
IRG7PH30K10PbF
1000
1000 EON
tF
Swiching Time (ns)
Energy (µJ)
900
100
tdOFF tR
800
700
tdON
600
EOFF
10 0 5 10 IC (A) 15 20
0
10
20
30
40
50
RG ( Ω)
Fig. 13 - Typ. Switching Time vs. IC TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22Ω; VGE = 15V
1000 tF
Fig. 14 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V
48 60
40
Swiching Time (ns)
50 Tsc
100
Time (µs)
tdOFF tR 10 tdON
32 Isc 24
40
Current (A)
30
16
20
1 0 10 20 30 40 50 RG ( Ω)
8 8 10 12 VGE (V) 14 16
10
Fig. 15 - Typ. Switching Time vs. RG TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V
10000
VGE, Gate-to-Emitter Voltage (V)
Fig. 16 - VGE vs. Short Circuit Time VCC = 600V; TC = 150°C
16 14 12 10 8 6 4 2 0 VCES = 600V VCES = 400V
1000
Capacitance (pF)
Cies
100 Coes 10 Cres
1 0 100 200 300 400 500 VCE (V)
0
10
20
30
40
50
Q G, Total Gate Charge (nC)
Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 18- Typical Gate Charge vs. VGE ICE = 9.0A; L = 1.0mH
www.irf.com
5
IRG7PH30K10PbF
1 D = 0.50
Thermal Response ( Z thJC )
0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE )
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4
Ri (°C/W)
0.01068 0.18156 0.31802 0.19105
0.000005 0.000099 0.001305 0.009113
τi (sec)
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
IRG7PH30K10PbF
L
L
0
DUT 1K
VCC
80 V +
-
DUT Rg
Vclamped
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
DIODE CLAMP
L
VCC
Rg
DUT / DRIVER
VCC
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R = VCC
ICM
C f rce o
100K D1 22K C sense
DUT
Rg
VCC
Gf orce DUT E sense 0.0075µ
E f rce o
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
www.irf.com
7
IRG7PH30K10PbF
900 800 700 600 500 VCE (V) 400 300 200 100 0 -100 -5 0
Eoff Loss 5% V CE 5% ICE 90% ICE
18 tf 16 14 12 10
700 600 500 400 V CE (V)
ICE (A)
35 30 tr 25 20 15
10% test c urrent
8 6 4 2 0 -2 10 5 time(µs)
300 200 100 0
Eon Loss
10
5% V CE
5 0 -5
-100 -1.8
-0.8
0.2
1.2
2.2
3.2
time (µs)
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4
800 700 600 500 Vce (V) 400 300 200 100 0 -100 -5 0 5 Time (uS)
Fig. WF4 - Typ. S.C. Waveform @ TJ = 150°C using Fig. CT.3
80 VCE ICE 70 60 50 Ice (A) 40 30 20 10 0 -10
10
8
www.irf.com
ICE (A)
90% test current
TEST CURRENT
IRG7PH30K10PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSAQ@"Ã XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
,5)3(
à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$&
96U@Ã8P9@ `@6SÃ Ã2Ã! X@@FÃ"$ GDI@ÃC
TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/2009
www.irf.com
9