0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG7PH35UD-EP

IRG7PH35UD-EP

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRG7PH35UD-EP - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International...

  • 详情介绍
  • 数据手册
  • 价格&库存
IRG7PH35UD-EP 数据手册
PD-96288 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • Low VCE (ON) trench IGBT technology Low switching losses Square RBSOA 100% of the parts tested for ILM  Positive VCE (ON) temperature co-efficient Ultra fast soft recovery co-pak diode Tight parameter distribution Lead-Free IRG7PH35UDPbF IRG7PH35UD-EP C VCES = 1200V I NOMINAL = 20A G E TJ(max) = 150°C Benefits • High efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to low VCE (ON) and low switching losses • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation n-channel C VCE(on) typ. = 1.9V C Applications • • • • U.P.S. Welding Solar Inverter Induction Heating GC E TO-247AC IRG7PH35UDPbF GC E TO-247AD IRG7PH35UD-EP G Gate C Collector E Emitter Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C INOMINAL ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Nominal Current Pulse Collector Current, VGE=15V Clamped Inductive Load Current, VGE=20V Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) Max. 1200 50 25 20 60 80 50 25 80 ±30 180 70 -55 to +150 Units V c A d Continuous Gate-to-Emitter Voltage V W °C Thermal Resistance Parameter RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) f Min. ––– ––– ––– ––– Typ. ––– ––– 0.24 40 Max. 0.70 0.65 ––– ––– Units °C/W 1 www.irf.com 02/08/10 IRG7PH35UDPbF/IRG7PH35UD-EP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ Min. 1200 — — — 3.0 — — — — — — — Typ. — 1.2 1.9 2.3 — -16 22 2.0 2000 2.8 2.5 — Max. — — 2.2 — 6.0 — — 100 — 3.6 — ±100 Units V V/°C V V S µA V nA Conditions VGE = 0V, IC = 250µA Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage e VGE = 0V, IC = 1mA (25°C-150°C) IC = 20A, VGE = 15V, TJ = 25°C IC = 20A, VGE = 15V, TJ = 150°C VCE = VGE, IC = 600µA VCE = 50V, IC = 20A, PW = 30µs VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C IF = 20A IF = 20A, TJ = 150°C VGE = ±30V VCE(on) VGE(th) ∆VGE(th)/∆TJ Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current mV/°C VCE = VGE, IC = 600µA (25°C - 150°C) gfe ICES VFM IGES Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Min. — — — — — — — — — — — — — — — — — — — — Typ. 85 15 35 1060 620 1680 30 15 160 80 1750 1120 2870 30 15 190 210 1940 120 40 Max. 130 20 50 1300 850 2150 50 30 180 105 — — — — — — — — — — Units IC = 20A nC VGE = 15V VCC = 600V Conditions IC = 20A, VCC = 600V, VGE = 15V µJ RG = 10Ω, L = 200uH, LS = 150nH, TJ = 25°C Energy losses include tail & diode reverse recovery IC = 20A, VCC = 600V, VGE = 15V ns RG = 10Ω, L = 200uH, LS = 150nH, TJ = 25°C IC = 20A, VCC = 600V, VGE=15V µJ RG=10Ω, L=200uH, LS=150nH, TJ = 150°C IC = 20A, VCC = 600V, VGE = 15V ns RG = 10Ω, L = 200uH, LS = 150nH TJ = 150°C pF VGE = 0V VCC = 30V f = 1.0Mhz TJ = 150°C, IC = 80A VCC = 960V, Vp =1200V Rg = 10Ω, VGE = +20V to 0V eà Energy losses include tail & diode reverse recovery FULL SQUARE — — — 790 105 40 — — — µJ ns A TJ = 150°C VCC = 600V, IF = 20A VGE = 15V, Rg = 10Ω , L =1.0mH, Ls = 150nH Notes:  VCC = 80% (VCES), VGE = 20V, RG = 50Ω. ‚ Pulse width limited by max. junction temperature. ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely. „ Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP 45 40 35 Load Current ( A ) 30 25 20 Square Wave: VCC For both: Duty cycle : 50% Tj = 150°C Tc = 100°C Gate drive as specified Power Dissipation = 70W I 15 10 5 0 0.1 1 f , Frequency ( kHz ) 10 100 Diode as specified Fig. 1 - Typical Load Current vs. Frequency 60 50 40 IC (A) 150 (Load Current = IRMS of fundamental) 200 30 20 10 0 25 50 75 100 125 150 Ptot (W) 100 50 0 0 20 40 60 80 100 120 140 160 T C (°C) T C (°C) Fig. 2 - Maximum DC Collector Current vs. Case Temperature 1000 Fig. 3- Power Dissipation vs. Case Temperature 1000 100 10µsec 100 IC (A) 10 IC (A) 1 DC 100µsec 1msec 10 0.1 Tc = 25°C Tj = 150°C Single Pulse 0.01 1 10 100 VCE (V) 1000 10000 1 10 100 VCE (V) 1000 10000 Fig. 4 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V Fig. 5 - Reverse Bias SOA TJ = 150°C; VGE = 20V www.irf.com 3 IRG7PH35UDPbF/IRG7PH35UD-EP 80 70 60 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 70 60 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) ICE (A) 40 30 20 10 0 0 2 4 6 8 10 40 30 20 10 0 0 2 4 6 8 10 Fig. 6- Typ. IGBT Output Characteristics TJ = -40°C; tp = 30µs 80 70 60 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V IF (A) VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 30µs 80 70 60 50 40 30 20 10 0 -40°C 25°C 150°C ICE (A) 40 30 20 10 0 0 2 4 6 8 10 0 1 2 3 VF (V) 4 5 6 VCE (V) Fig. 8 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 30µs 8 7 6 VCE (V) Fig. 9 - Typ. Diode Forward Characteristics tp = 380µs 8 7 6 VCE (V) 5 4 3 2 1 4 8 ICE = 10A ICE = 20A ICE = 40A 5 4 3 2 1 ICE = 10A ICE = 20A ICE = 40A 12 VGE (V) 16 20 5 10 VGE (V) 15 20 Fig. 10 - Typical VCE vs. VGE TJ = -40°C Fig. 11 - Typical VCE vs. VGE TJ = 25°C 4 www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP 8 7 6 VCE (V) IC, Collector-to-Emitter Current (A) 80 70 60 50 40 30 20 10 0 T J = 25°C TJ = 150°C 5 4 3 2 1 5 10 ICE = 10A ICE = 20A ICE = 40A 15 VGE (V) 20 4 5 6 7 8 9 10 VGE, Gate-to-Emitter Voltage (V) 4000 Fig. 12 - Typical VCE vs. VGE TJ = 150°C Fig. 13 - Typ. Transfer Characteristics VCE = 50V, tp = 30µs 1000 tdOFF 3000 Swiching Time (ns) Energy (µJ) EON 2000 EOFF 1000 100 tF tdON 10 tR 0 0 10 20 IC (A) 30 40 1 0 10 20 IC (A) 30 40 Fig. 14 - Typ. Energy Loss vs. IC TJ = 150°C; L = 680µH; VCE = 600V, RG = 10Ω; VGE = 15V 3500 3000 Fig. 15 - Typ. Switching Time vs. IC TJ = 150°C; L = 680µH; VCE = 600V, RG = 10Ω; VGE = 15V 10000 Swiching Time (ns) 2500 EON 1000 td OFF Energy (µJ) 2000 1500 1000 500 0 20 40 60 80 100 RG ( Ω) EOFF 100 tdON tR 0 20 40 tF 10 60 80 100 RG ( Ω) Fig. 16 - Typ. Energy Loss vs. RG TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V Fig. 17 - Typ. Switching Time vs. RG TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V www.irf.com 5 IRG7PH35UDPbF/IRG7PH35UD-EP 60 RG = 5.0Ω 50 45 40 50 IRR (A) IRR (A) 40 RG = 10Ω RG = 47Ω RG = 100Ω 35 30 25 20 30 20 10 10 15 20 25 IF (A) 30 35 40 0 20 40 60 80 100 RG ( Ω) Fig. 18 - Typ. Diode IRR vs. IF TJ = 150°C 55 50 45 6000 5000 Fig. 19 - Typ. Diode IRR vs. RG TJ = 150°C 40A 4000 QRR (µC) 5.0Ω 10Ω IRR (A) 40 35 30 25 20 200 400 600 800 1000 1200 1400 1600 diF /dt (A/µs) 3000 2000 1000 0 0 100Ω 47Ω 20A 10A 200 400 600 800 10001200140016001800 diF /dt (A/µs) Fig. 20 - Typ. Diode IRR vs. diF/dt VCC = 600V; VGE = 15V; IF = 20A; TJ = 150°C 2000 RG = 5.0 Ω 1500 RG = 10 Ω RG = 47Ω RG = 100Ω 1000 Fig. 21 - Typ. Diode QRR vs. diF/dt VCC = 600V; VGE = 15V; TJ = 150°C VGE(th) , Gate Threshold Voltage (Normalized) 5.0 IC = 600µA 4.0 Energy (µJ) 3.0 500 2.0 0 10 15 20 25 IF (A) 30 35 40 1.0 25 50 75 100 125 150 175 T J , Temperature (°C) Fig. 22 - Typ. Diode ERR vs. IF TJ = 150°C Fig. 23 - Typical Gate Threshold Voltage (Normalized) vs. Junction Temperature 6 www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP 10000 16 VGE, Gate-to-Emitter Voltage (V) 14 12 10 8 6 4 2 0 Cies VCES = 600V VCES = 400V Capacitance (pF) 1000 100 Coes Cres 10 0 100 200 300 VCE (V) 400 500 600 0 20 40 60 80 100 Q G, Total Gate Charge (nC) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 1 D = 0.50 Thermal Response ( Z thJC ) Fig. 24 - Typical Gate Charge vs. VGE ICE = 20A; L = 2.4mH 0.20 0.1 0.10 0.05 0.02 0.01 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4 Ri (°C/W) 0.017 0.218 0.299 0.177 τi (sec) 0.000013 0.000141 0.002184 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Ci= τi/Ri Ci i/Ri 0.013107 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-005 0.0001 0.001 0.01 0.1 Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 1 D = 0.50 Thermal Response ( Z thJC ) t1 , Rectangular Pulse Duration (sec) 0.1 0.20 0.10 0.05 0.02 0.01 τJ τJ τ1 0.01 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ4 Ri (°C/W) 0.015 0.235 0.281 0.130 τi (sec) 0.000043 0.000408 0.003593 0.020382 τ1 τ2 τ3 τ4 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 1 0.0001 1E-006 1E-005 0.0001 0.001 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRG7PH35UDPbF/IRG7PH35UD-EP L L 0 DUT 1K VCC 80 V + - DUT Rg VCC Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT L Fig.C.T.2 - RBSOA Circuit R= V CC ICM -5V DUT / DRIVER Rg VCC Rg DUT VCC Fig.C.T.3 - Switching Loss Circuit Fig.C.T.4 - Resistive Load Circuit C force 100K D1 DUT 0.0075µF 22K C sens e G force E sense E force Fig.C.T.5 - BVCES Filter Circuit 8 www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP 800 700 600 500 VCE (V) 400 300 200 100 0 -100 -0.5 Eoff Loss 5% ICE 5% V CE 90% ICE 40 tf 35 30 25 VCE (V) ICE (A) 20 15 10 5 0 -5 1.5 2 800 700 600 500 400 300 200 100 0 -100 -0.3 Eon Loss -0.1 0.1 time (µs) 0.3 0.5 10% test current 5% V CE 90% test current 80 tr TEST CURRENT 70 60 50 ICE (A) 40 30 20 10 0 -10 0 0.5 1 time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 30 20 10 0 VF (V) -10 -20 -30 -40 -50 -0.25 Peak IRR 10% Peak IRR EREC t RR -0.05 0.15 time (µS) 0.35 0.55 Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 9 IRG7PH35UDPbF/IRG7PH35UD-EP Dimensions are shown in millimeters (inches) TO-247AC Package Outline TO-247AC Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSAQ@"à XDUCÃ6TT@H7G`à GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S ,5)3( à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$& 96U@Ã8P9@ `@6Sà Ã2Ã! X@@FÃ"$ GDI@ÃC TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP Dimensions are shown in millimeters (inches) TO-247AD Package Outline TO-247AD Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSBQ"7 !F9@ XDUCÃ6TT@H7G`à GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S Ã"$C $%ÃÃÃÃÃÃÃÃÃÃÃ$& 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ"$ GDI@ÃC TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/2010 www.irf.com 11
IRG7PH35UD-EP
1. 物料型号: - 型号:IRG7PH35UDPbF/IRG7PH35UD-EP - 制造商:International Rectifier(现属于Infineon)

2. 器件简介: - 该器件是一个绝缘栅双极晶体管(IGBT)与超快速软恢复二极管的组合。 - 特点包括低导通压降、低开关损耗、方波安全工作区(RBSOA)和超快速软恢复共封二极管。

3. 引脚分配: - G(Gate,栅极) - C(Collector,集电极) - E(Emitter,发射极)

4. 参数特性: - 集电极-发射极电压(VCES):1200V - 集电极电流(Ic):连续50A,脉冲60A - 门极-发射极电压(VGE):±30V - 工作结温(TJ):-55至+150°C - 热阻(Rth):IGBT结到外壳0.70°C/W,二极管结到外壳0.65°C/W

5. 功能详解: - 低导通压降技术,适用于高效率应用。 - 适用于多种开关频率,因为具有低导通压降和低开关损耗。 - 增强的瞬态性能,提高可靠性。 - 并行操作时具有出色的电流共享能力。

6. 应用信息: - 不间断电源(UPS) - 焊接 - 太阳能逆变器 - 感应加热

7. 封装信息: - 提供TO-247AC和TO-247AD两种封装方式。 - 封装尺寸详细说明在文档中有提供,包括英寸和毫米两种单位。
IRG7PH35UD-EP 价格&库存

很抱歉,暂时无法提供与“IRG7PH35UD-EP”相匹配的价格&库存,您可以联系我们找货

免费人工找货