PD - 97455
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
IRG7PH35UD1PbF IRG7PH35UD1-EP
VCES = 1200V I NOMINAL = 20A
Features
• • • • • • • • • Low VCE (ON) trench IGBT Technology Low Switching Losses Square RBSOA Ultra-Low VF Diode 1300Vpk Repetitive Transient Capacity 100% of the Parts Tested for ILM Positive VCE (ON) Temperature Co-Efficient Tight Parameter Distribution Lead Free Package
C
G E
TJ(max) = 150°C
n-channel
C
VCE(on) typ. = 1.9V
Benefits
• Device optimized for induction heating and soft switching applications • High Efficiency due to Low VCE(on), low switching losses and Ultra-low VF • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation • Low EMI
C
GC
E
TO-247AC IRG7PH35UD1PbF
E GC TO-247AD IRG7PH35UD1-EP
G Gate
C Collector
E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C INOMINAL ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Nominal Current Pulse Collector Current, VGE=15V Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Max.
1200 50 25 20
Units
V
f d
Clamped Inductive Load Current, VGE=20V
c
60 80 50 25 80 ±30 179 71 -55 to +150
A
Continuous Gate-to-Emitter Voltage
V W
°C
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode)
g g
Min.
––– ––– ––– –––
Typ.
––– ––– 0.24 40
Max.
0.70 1.35 ––– –––
Units
°C/W
Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
1
www.irf.com
02/09/2010
IRG7PH35UD1PbF/IRG7PH35UD1-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
V(BR)Transient ∆V(BR)CES/∆TJ
Min.
1200 — — — — 3.0 — — — — — —
Typ.
— — 1.2 1.9 2.3 — 22 1.0 120 1.15 1.08 —
Max.
— 1300 — 2.2 — 6.0 — 100 — 1.26 — ±100
Units
V V
Conditions
VGE = 0V, IC = 100µA
Collector-to-Emitter Breakdown Voltage
Repetitive Transient Collector-to-Emitter Voltage Temperature Coeff. of Breakdown Voltage
VGE = 0V, TJ = 75°C, PW 10µs
e
VCE(on) VGE(th) gfe ICES VFM IGES
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 20A, VGE = 15V, TJ = 25°C V IC = 20A, VGE = 15V, TJ = 150°C V S µA V nA VCE = VGE, IC = 600µA VCE = 50V, IC = 20A, PW = 30µs VGE = 0V, VCE = 1200V
e
VGE = 0V, VCE = 1200V, TJ = 150°C IF = 20A IF = 20A, TJ = 150°C VGE = ±30V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eoff td(off) tf Eoff td(off) tf Cies Coes Cres RBSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-Off Switching Loss Turn-Off delay time Fall time Turn-Off Switching Loss Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area
Min.
— — — — — — — — — — — —
Typ.
85 15 35 620 160 80 1120 190 210 1940 120 40
Max.
130 20 50 850 180 105 — — — — — —
Units
IC = 20A nC VGE = 15V VCC = 600V
Conditions
IC = 20A, VCC = 600V, VGE = 15V µJ ns RG = 10Ω, L = 200µH,LS = 150nH, TJ = 25°C
Energy losses include tail
IC = 20A, VCC = 600V, VGE = 15V RG = 10Ω, L = 200µH,LS = 150nH, TJ = 25°C IC = 20A, VCC = 600V, VGE=15V
µJ ns pF
RG = 10Ω, L = 200µH,LS = 150nH, TJ = 150°C
Energy losses include tail
IC = 20A, VCC = 600V, VGE = 15V RG = 10Ω, L = 200µH,LS = 150nH, TJ = 150°C VGE = 0V VCC = 30V f = 1.0Mhz TJ = 150°C, IC = 80A VCC = 960V, Vp =1200V Rg = 10Ω, VGE = +20V to 0V
FULL SQUARE
Notes: VCC = 80% (VCES), VGE = 20V, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rating for Hard Switching conditions. Rating is higher in Soft Switching conditions.
Rθ is measured at TJ approximately 90°C.
2
www.irf.com
IRG7PH35UD1PbF/IRG7PH35UD1-EP
50
200 175
40
150 125
Ptot (W)
30
IC (A)
100 75 50 25
20
10
0 25 50 75 100 125 150
0 25 50 75 100 125 150 T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
VGE(th), Gate Threshold Voltage (Normalized)
1.0 IC = 600µA 0.9
Fig. 2 - Power Dissipation vs. Case Temperature
1000
100 0.8
0.7 10 0.6
0.5 25 50 75 100 125 150 T J , Temperature (°C)
IC (A)
1 10 100 VCE (V) 1000 10000
Fig. 3 - Typical Gate Threshold Voltage (Normalized) vs. Junction Temperature
80 70 60 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 70 60 50
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE = 20V
ICE (A)
ICE (A)
40 30 20 10 0 0 2 4 6 8 10
40 30 20 10 0 0 2 4 6
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
8
10
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 30µs
VCE (V)
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 30µs
www.irf.com
3
IRG7PH35UD1PbF/IRG7PH35UD1-EP
80 70 60 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
IF (A)
80 70 60 50 40 30 20 10 0 25°C 150°C
ICE (A)
40 30 20 10 0 0 2 4 6 8 10
0.0
0.5
1.0 VF (V)
1.5
2.0
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 30µs
8 7 6
VCE (V)
Fig. 8 - Typ. Diode Forward Voltage Drop Characteristics
8 7 6
VCE (V)
5 4 3 2 1 4 8
ICE = 10A ICE = 20A ICE = 40A
5 4 3 2 1
ICE = 10A ICE = 20A ICE = 40A
12 VGE (V)
16
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
8 7 6
VCE (V)
IC, Collector-to-Emitter Current (A)
80 70 60 50 40 30 20 10 0
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
5 4 3 2 1 5 10
ICE = 10A ICE = 20A ICE = 40A
TJ = 150°C
T J = 25°C
15 VGE (V)
20
4
5
6
7
8
9
10
VGE, Gate-to-Emitter Voltage (V)
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 30µs
4
www.irf.com
IRG7PH35UD1PbF/IRG7PH35UD1-EP
2200 2000 1800 EOFF
1000
tF
Energy (µJ)
1400 1200 1000 800 600 400 200 0 10
Swiching Time (ns)
1600
tdOFF 100
10
20 IC (A) 30 40 50
0
10
20 IC (A)
30
40
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 680µH; VCE = 600V, RG = 10Ω; VGE = 15V
2800 2600 2400 2200
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 680µH; VCE = 600V, RG = 10Ω; VGE = 15V
10000
2000 1800 1600 1400 1200 1000 0 25
EOFF
Swiching Time (ns)
1000
tdOFF
Energy (µJ)
100
tF
10
50 75 100 125
0
20
40
60 RG ( Ω)
80
100
120
Rg ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V
10000
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V
16
VGE, Gate-to-Emitter Voltage (V)
14 12 10 8 6 4 2 0
Cies
VCES = 600V VCES = 400V
Capacitance (pF)
1000
100
Coes
Cres 10 0 100 200 300 VCE (V) 400 500 600
0
20
40
60
80
100
Q G, Total Gate Charge (nC)
Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 18 - Typical Gate Charge vs. VGE ICE = 20A; L = 2.4mH
www.irf.com
5
IRG7PH35UD1PbF/IRG7PH35UD1-EP
1 D = 0.50
Thermal Response ( Z thJC )
0.20 0.1 0.10 0.05 0.02 0.01 0.01
τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4
Ri (°C/W)
0.017 0.218 0.299 0.177
τi (sec)
0.000013 0.000141 0.002184 0.013107
SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20
0.1
0.10 0.05 0.02 0.01
τJ τJ τ1
R1 R1 τ2
R2 R2
R3 R3 τ3
R4 R4 τC τ τ4
Ri (°C/W)
0.00756 0.56517 0.54552 0.25085
0.000005 0.000677 0.003514 0.019551
τi (sec)
τ1
τ2
τ3
τ4
0.01 SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 20. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
6
www.irf.com
IRG7PH35UD1PbF/IRG7PH35UD1-EP
L
L
0
DUT 1K
VCC
80 V +
-
VCC
DUT Rg
VCC
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
C force
diode clamp / DUT L
100K D1 22K
C sens e
-5V DUT / DRIVER Rg VCC
G force DUT
0.0075µF
E sense
E force
Fig.C.T.3 - Switching Loss Circuit
800 700 600 500 VCE (V) 400 300 200 100 0 -100 -0.5
Eof f Loss 5% ICE 5% V CE 90% ICE
Fig.C.T.4 - BVCES Filter Circuit
40 tf 35 30 25 ICE (A) 20 15 10 5 0 -5 1.5 2
0
0.5
1
time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.3
www.irf.com
7
IRG7PH35UD1PbF/IRG7PH35UD1-EP
Dimensions are shown in millimeters (inches)
TO-247AC Package Outline
TO-247AC Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSAQ@"Ã XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ Q6SUÃIVH7@S
,5)3(
DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@
à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$&
96U@Ã8P9@ `@6SÃ Ã2Ã! X@@FÃ"$ GDI@ÃC
TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRG7PH35UD1PbF/IRG7PH35UD1-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSBQ"7 !F9@ XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ Q6SUÃIVH7@S
Ã"$C $%ÃÃÃÃÃÃÃÃÃÃÃ$&
DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@
96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ"$ GDI@ÃC
TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/2010
www.irf.com
9