PD - 97480
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
IRG7PH42UD1PbF IRG7PH42UD1-EP
VCES = 1200V I NOMINAL = 30A
Features
• • • • • • • • • Low VCE (ON) trench IGBT technology Low switching losses Square RBSOA Ultra-low VF Diode 1300Vpk repetitive transient capacity 100% of the parts tested for ILM Positive VCE (ON) temperature co-efficient Tight parameter distribution Lead free package
C
G E
TJ(max) = 150°C
n-channel
C
VCE(on) typ. = 1.7V
Benefits
• Device optimized for induction heating and soft switching applications • High Efficiency due to Low VCE(on), low switching losses and Ultra-low VF • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation • Low EMI
C
GC
E
TO-247AC IRG7PH42UD1PbF
E GC TO-247AD IRG7PH42UD1-EP
G Gate
C Collector
E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C INOMINAL ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFRM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Nominal Current Pulse Collector Current, VGE=15V Diode Continous Forward Current Diode Continous Forward Current Diode Repetitive Peak Forward Current Continuous Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Max.
1200 85 45 30
Units
V
g
h d
Clamped Inductive Load Current, VGE=20V
c
90 120 70 35 120 ±30 313 125 -55 to +150
A
V W
°C
Thermal Resistance
RθJC (IGBT) RθJC (Diode) RθCS RθJA
f Thermal Resistance Junction-to-Case-(each Diode) f
Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
Parameter
Min.
––– ––– ––– –––
Typ.
––– ––– 0.24 40
Max.
0.4 1.05 ––– –––
Units
°C/W
1
www.irf.com
3/26/10
IRG7PH42UD1PbF/IRG7PH42UD1-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES VCES(Transient)
ΔV(BR)CES/ΔTJ
Min.
1200 — — — — 3.0 — — — — — —
Typ.
— — 1.2 1.7 2.0 — 32 1.0 230 1.15 1.10 —
Max. Units
— 1300 — 2.0 — 6.0 — 100 — 1.30 — ±100
Conditions
Collector-to-Emitter Breakdown Voltage
Repetitive Transient Collector-to-Emitter Voltage
Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
VCE(on) VGE(th) gfe ICES VFM IGES
V VGE = 0V, IC = 100μA V VGE = 0V, TJ=75°C, PW ≤ 10μs V/°C VGE = 0V, IC = 2.0mA (25°C-150°C) IC = 30A, VGE = 15V, TJ = 25°C V IC = 30A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 1.0mA S VCE = 50V, IC = 30A, PW = 80μs VGE = 0V, VCE = 1200V μA VGE = 0V, VCE = 1200V, TJ = 150°C IF = 30A V IF = 30A, TJ = 150°C nA VGE = ±30V
e
e
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eoff td(off) tf Eoff td(off) tf Cies Coes Cres RBSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-Off Switching Loss Turn-Off delay time Fall time Turn-Off Switching Loss Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area
Min.
— — — — — — — — — — — —
Typ.
180 24 70 1210 270 35 1936 300 160 3390 130 83
Max. Units
270 36 110 1450 290 43 — — — — — — nC
Conditions
IC = 30A VGE = 15V VCC = 600V IC = 30A, VCC = 600V, VGE = 15V RG = 10Ω , L = 200μH,TJ = 25°C
Energy losses include tail
μJ
ns
μJ ns
IC = 30A, VCC = 600V, VGE = 15V RG = 10Ω , L = 200μH,TJ = 25°C IC = 30A, VCC = 600V, VGE = 15V RG = 10Ω , L = 200μH,TJ = 150°C
Energy losses include tail
pF
FULL SQUARE
IC = 30A, VCC = 600V, VGE = 15V RG = 10Ω , L = 200μH, TJ = 150°C VGE = 0V VCC = 30V f = 1.0Mhz TJ = 150°C, IC = 120A VCC = 960V, Vp =1200V Rg = 10Ω , VGE = +20V to 0V
Notes: VCC = 80% (VCES), VGE = 20V, L = 22μH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C.
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 78A. Note that current
limitations arising from heating of the device leads may occur with some lead mounting arrangements.
Rating for Hard Switching conditions. Rating is higher in Soft Switching conditions.
2
www.irf.com
IRG7PH42UD1PbF/IRG7PH42UD1-EP
100 LIMITED BY PACKAGE
350 300
IC, Collector Current (A)
80
250
Ptot (W)
25 50 75 100 125 150 60
200 150 100
40
20
50
0 TC, Case Temperature (°C)
0 25 50 75 100 125 150 TC (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
V GE(th), Gate Threshold Voltage (Normalized)
Fig. 2 - Power Dissipation vs. Case Temperature
1000
1.0 IC = 1.0mA 0.9
100
0.8
IC (A)
10 1
0.7
0.6
0.5 25 50 75 100 125 150 TJ , Temperature (°C)
10
100 VCE (V)
1000
10000
Fig. 3 - Typical Gate Threshold Voltage (Normalized) vs. Junction Temperature
120 100 80 V GE = 18V V GE = 15V V GE = 12V V GE = 10V
ICE (A)
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE = 20V
120 V GE = 18V 100 80 60 40 20 0 V GE = 15V V GE = 12V V GE = 10V V GE = 8.0V
ICE (A)
60 40 20 0 0 2 4 6
V GE = 8.0V
8
10
0
2
4
6
8
10
V CE (V)
V CE (V)
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs
www.irf.com
3
IRG7PH42UD1PbF/IRG7PH42UD1-EP
120 100 80 VGE = 18V VGE = 15V
140 120 100 25°C 150°C
VGE = 12V VGE = 10V
VGE = 8.0V
IF (A)
ICE (A)
80 60 40 20 0
60 40 20 0 0 2 4 6 8 10
0.0
0.5
1.0 VF (V)
1.5
2.0
V CE (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80μs
20 18 16 14
VCE (V) VCE (V)
Fig. 8 - Typ. Diode Forward Voltage Drop Characteristics
20 18 16 14
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 15A ICE = 30A ICE = 60A
12 10 8 6 4 2 0 5 10
ICE = 15A ICE = 30A ICE = 60A
15
20
15 VGE (V)
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
20
ICE, Collector-to-Emitter Current (A)
120 100 80 60 40 20 0
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
18 16 14
VCE (V)
12 10 8 6 4 2 0 5 10 V GE (V) 15 20 ICE = 15A ICE = 30A ICE = 60A
TJ = 25°C TJ = 150°C
2
4
6
8
10
VGE, Gate-to-Emitter Voltage (V)
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs
4
www.irf.com
IRG7PH42UD1PbF/IRG7PH42UD1-EP
5000
1000
4000
Swiching Time (ns)
EOFF
Energy (μJ)
3000
tdOFF
2000
1000
100
tF
0 0 10 20 30 40 50 60 70 I C (A)
0
10
20
30
40
50
60
70
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V
6500
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V
10000
5500
tdOFF
Swiching Time (ns)
1000
Energy (μJ)
4500
EOFF
3500
100 tF
2500
1500 0 25 50 75 100 125 RG (Ω)
10 0 20 40 60 RG (Ω) 80 100 120
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 200μH; VCE = 600V, ICE = 30A; VGE = 15V
10000 Cies
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 200μH; VCE = 600V, ICE = 30A; VGE = 15V
16 14 12 10 8 6 4 2 0 V CES =600V V CES = 400V
Capacitance (pF)
1000
100
Coes
Cres 10 0 20 40 60 80 100 VCE (V)
VGE, Gate-to-Emitter Voltage (V)
0
50
100
150
200
Q G, Total Gate Charge (nC)
Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 18 - Typical Gate Charge vs. VGE ICE = 30A; L = 680μH
www.irf.com
5
IRG7PH42UD1PbF/IRG7PH42UD1-EP
1
D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05
0.01
0.02 0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2
R3 R3 τ3
R4 R4 τC τ τ4
Ri (°C/W)
0.1306 0.1752 0.0814 0.0031
τi (sec)
0.000313 0.002056 0.008349 0.0431
τ1
τ2
τ3
τ4
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1
0.0001 1E-006
1E-005
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE )
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4
Ri (°C/W)
0.01186 0.39298 0.43450 0.22096
τi (sec)
0.00001 0.000547 0.003563 0.021596
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 20. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
6
www.irf.com
IRG7PH42UD1PbF/IRG7PH42UD1-EP
L
L
0
DUT 1K
VCC
80 V +
-
DUT Rg
VCC
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp / DUT L
Fig.C.T.2 - RBSOA Circuit
C force
100K D1 22K
C sens e
-5V DUT / DRIVER Rg VCC
G force
DUT
0.0075μF
E sense
E force
Fig.C.T.3 - Switching Loss Circuit
Fig.C.T.4 - BVCES Filter Circuit
800 700 600 500 VCE (V) 400
90% ICE
80 tf 70 60 50 ICE (A) 40 30 20
5% VCE 5% ICE
300 200 100 0
10 0
-100 -1 -0.5 0 0.5
Eoff Loss
-10 1.5 2
1
time(μ s)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.3
www.irf.com
7
IRG7PH42UD1PbF/IRG7PH42UD1-EP
Dimensions are shown in millimeters (inches)
TO-247AC Package Outline
TO-247AC Part Marking Information
EXAMPLE: THIS IS AN IRFPE30 WITH AS SEMBLY LOT CODE 5657 ASS EMBLED ON WW 35, 2001 IN THE AS SEMBLY LINE "H" Note: "P" in as sembly line pos ition indicates "Lead-Free" PART NUMBER
IRFPE30
56 135H 57
INTERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE
DATE CODE YEAR 1 = 2001 WEEK 35 LINE H
TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRG7PH42UD1PbF/IRG7PH42UD1-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
EXAMPLE: T HIS IS AN IRGP30B120KD-E WIT H AS S EMBLY LOT CODE 5657 AS S EMBLED ON WW 35, 2000 IN T HE AS S EMBLY LINE "H" Note: "P" in as sembly line pos ition indicates "Lead-Free" PART NUMBER
035H 57
INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE
56
DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H
TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 03/2010
www.irf.com
9