PD - 97155
PDP TRENCH IGBT
Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package
IRG7S319UPbF
Key Parameters
330 1.26 170 150 V V A °C
VCE min VCE(ON) typ. @ IC = 20A IRP max @ TC= 25°C TJ max
C
G E
G
C
E
n-channel
G Gate C Collector
D2Pak IRG7S319UPbF
E Emitter
Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications.
Absolute Maximum Ratings
Parameter
VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds 300
Max.
±30 45 20 170 96 38 0.77 -40 to + 150
Units
V A W W/°C °C
c
Thermal Resistance
RθJC Junction-to-Case
d
Parameter
Typ.
–––
Max.
1.3
Units
°C/W
www.irf.com
1
10/2/09
IRG7S319UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES ΔΒVCES/ΔTJ Collector-to-Emitter Breakdown Voltage Breakdown Voltage Temp. Coefficient
Min. Typ. Max. Units
330 ––– ––– ––– ––– 0.38 1.26 1.34 1.65 ––– ––– ––– 2.02 2.79 1.39 ––– -8.8 1.0 50 ––– 125 ––– ––– 55 38 13 16 22 81 105 16 25 95 203 ––– 854 1083 ––– ––– 1.43 ––– ––– ––– ––– ––– 4.7 20 200 ––– 100 -100 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ns μJ ns ns S nC nA μA V ––– mV/°C V
Conditions
V VGE = 0V, ICE = 250μA V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 20A VGE = 15V, ICE = 25A VGE = 15V, ICE VGE = 15V, ICE VGE = 15V, ICE
VCE(on)
Static Collector-to-Emitter Voltage
VGE = 15V, ICE = 25A, TJ = 150°C VCE = VGE, ICE = 1.3mA VCE = 330V, VGE = 0V
e e = 45A e = 70A e = 120A e
e
VGE(th) ΔVGE(th)/ΔTJ ICES
Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current
2.2 ––– –––
VCE = 330V, VGE = 0V, TJ = 125°C VCE = 330V, VGE = 0V, TJ = 150°C VGE = 30V VGE = -30V VCE = 25V, ICE = 25A VCE = 200V, IC = 25A, VGE = 15V IC = 25A, VCC = 196V RG = 10Ω, L=200μH TJ = 25°C IC = 25A, VCC = 196V RG = 10Ω, L=200μH TJ = 150°C VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40μF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40μF, VGE = 15V
IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst EPULSE
Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time Shoot Through Blocking Time Energy per Pulse
––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 100 ––– –––
e
Human Body Model ESD Machine Model Cies Coes Cres LC LE Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance Internal Emitter Inductance ––– ––– ––– ––– –––
VCC = 240V, RG= 5.1Ω, TJ = 100°C Class 1C (Per JEDEC standard JESD22-A114) Class B (Per EIA/JEDEC standard EIA/JESD22-A115) VGE = 0V 1098 ––– 56 32 4.5 7.5 ––– ––– ––– nH ––– pF VCE = 30V ƒ = 1.0MHz Between lead, 6mm (0.25in.) from package and center of die contact
Notes: Half sine wave with duty cycle = 0.05, ton=2μsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
IRG7S319UPbF
200 VGE = 18V VGE = 15V VGE = 12V
200
160
160
VGE = 18V
VGE = 15V
ICE (A)
ICE (A)
120
80
VGE = 10V VGE = 8.0V VGE = 6.0V
120
VGE = 12V VGE = 10V VGE = 8.0V
80
VGE = 6.0V
40
40
0 0 2 4 6 VCE (V) 8 10
0 0 2 4 6 VCE (V) 8 10
Fig 1. Typical Output Characteristics @ 25°C
200
Fig 2. Typical Output Characteristics @ 75°C
200
160 VGE = 18V
ICE (A)
160 VGE = 18V
ICE (A)
120
VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V
120
80
80
VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V
40
40
0 0 2 4 6 VCE (V) 8 10
0 0 2 4 6 VCE (V) 8 10
Fig 3. Typical Output Characteristics @ 125°C
200
Fig 4. Typical Output Characteristics @ 150°C
10 IC = 25A
160
8
80
T J = 25°C T J = 150°C
VCE (V)
ICE (A)
120
6
TJ = 25°C TJ = 150°C
4
40
2
0 2 4 6 8 10 12 VGE (V)
0 0 5 10 V GE (V) 15 20
Fig 5. Typical Transfer Characteristics
Fig 6. VCE(ON) vs. Gate Voltage
www.irf.com
3
IRG7S319UPbF
50
200
Repetitive Peak Current (A)
40
160
30
IC (A)
120
20
80 ton= 2μs Duty cycle = 0.05 Half Sine Wave
10
40
0 0 25 50 75 TC (°C) 100 125 150
0 25 50 75 100 125 150 Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
1100 VCC = 240V 1000 L = 220nH C = variable 100°C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1400 1300 L = 220nH C = 0.4μF 100°C
Energy per Pulse (μJ)
Energy per Pulse (μJ)
900 800 25°C 700 600 500 160 170 180 190 200 210 220 230
1200 1100 1000 900 800 700 200 210 220 230
25°C
240
250
260
270
IC, Peak Collector Current (A)
VCC, Collector-to-Supply Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
1200 VCC = 240V 1000 L = 220nH t = 1μs half sine C= 0.4μF
Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage
100 100 μs
10 μs
Energy per Pulse (μJ)
10
IC (A)
800
C= 0.3μF
1ms 1
600 C= 0.2μF
400 25 50 75 100 125 150 TJ, Temperature (ºC)
0.1 1 10 V CE (V) 100 1000
Fig 11. EPULSE vs. Temperature
Fig 12. Forrward Bias Safe Operating Area
4
www.irf.com
IRG7S319UPbF
10000
20
VGE, Gate-to-Source Voltage (V)
ID= 25A VDS = 240V VDS = 200V VDS = 60V
16
Capacitance (pF)
1000
Cies
12
8
100
Coes Cres
10 0 100 200
4
0 0 10 20 30 40 QG Total Gate Charge (nC)
VCE (V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
10
Thermal Response ( ZthJC )
1
D = 0.50 0.20
0.1
0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
τJ τJ τ1 τ1
R1 R1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
Ri (°C/W)
τι (sec)
τ2
0.01
Ci= τ i/Ri Ci= τi/Ri
0.459659 0.000349 0.55727 0.001537 0.283959 0.00944
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 0.01 0.1
0.001 1E-006 1E-005 0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG7S319UPbF
A
RG
DRIVER L
C
PULSE A
VCC
B
PULSE B
RG
Ipulse DUT
tST
Fig 16a. tst and EPULSE Test Circuit
Fig 16b. tst Test Waveforms
VCE
Energy IC Current
0
L DUT 1K VCC
Fig 16c. EPULSE Test Waveforms
Fig. 17 - Gate Charge Circuit (turn-off)
6
www.irf.com
IRG7S319UPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L
OR
INT ERNAT IONAL RECT IF IER LOGO AS SEMBLY LOT CODE PART NUMBER F 530S DAT E CODE P = DES IGNAT ES LEAD - F REE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS SEMBLY S IT E CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
7
IRG7S319UPbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059)
0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/2009
8
www.irf.com