0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGB15B60KD

IRGB15B60KD

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGB15B60KD - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International R...

  • 数据手册
  • 价格&库存
IRGB15B60KD 数据手册
PD - 94383C INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C IRGB15B60KD IRGS15B60KD IRGSL15B60KD VCES = 600V IC = 15A, TC=100°C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. G E tsc > 10µs, TJ=150°C Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. n-channel VCE(on) typ. = 1.8V TO-220AB IRGB15B60KD Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. D2Pak IRGS15B60KD Max. 600 31 15 62 62 31 15 64 ± 20 208 83 -55 to +150 TO-262 IRGSL15B60KD Units V A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount  Junction-to-Ambient (PCB Mount, steady state)‚ Weight Min. ––– ––– ––– ––– ––– ––– Typ. ––– ––– 0.50 ––– ––– 1.44 Max. 0.6 2.1 ––– 62 40 ––– Units °C/W g www.irf.com 1 6/24/02 IRG/B/S/SL15B60KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.05 ––– 2.10 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 10.6 Zero Gate Voltage Collector Current ––– 5.0 ––– 500 Diode Forward Voltage Drop ––– 1.20 ––– 1.20 Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 IC = 15A, VGE = 15V 2.50 V IC = 15A, VGE = 15V TJ = 125°C 2.60 IC = 15A, VGE = 15V TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 20A, PW=80µs 150 µA VGE = 0V, VCE = 600V 1000 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 15A 1.45 V IC = 15A TJ = 150°C ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 9, 10,11 9, 10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Short Circuit Safe Operting Area Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Ref.Fig. Max. Units Conditions 84 IC = 15A 10 nC VCC = 400V CT1 39 VGE = 15V CT4 330 µJ IC = 15A, VCC = 400V 455 VGE = 15V,RG = 22Ω, L = 200µH 785 Ls = 150nH TJ = 25°C ƒ 44 IC = 15A, VCC = 400V 22 VGE = 15V, RG = 22Ω, L = 200µH CT4 200 ns Ls = 150nH, T J = 25°C 26 CT4 470 IC = 15A, VCC = 400V 13,15 600 µJ VGE = 15V,RG = 22Ω, L = 200µH WF1WF2 1070 Ls = 150nH TJ = 150°C ƒ 14, 16 44 IC = 15A, VCC = 400V CT4 25 VGE = 15V, RG = 22Ω, L = 200µH 226 ns Ls = 150nH, T J = 150°C WF1 36 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 62A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 22Ω CT2 CT3 µs TJ = 150°C, Vp =600V,RG = 22Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 540 720 µJ TJ = 150°C 20,21 ––– 92 111 ns VCC = 400V, IF = 15A, L = 200µH CT4,WF3 ––– 29 33 A VGE = 15V,RG = 22Ω, Ls = 150nH Typ. 56 7.0 26 220 340 560 34 16 184 20 355 490 835 34 18 203 28 850 75 35 Note  to ƒ are on page 15 2 www.irf.com IRG/B/S/SL15B60KD 35 30 25 240 200 160 Ptot (W) 0 20 40 60 80 100 120 140 160 IC (A) 20 15 10 5 0 T C (°C) 120 80 40 0 0 20 40 60 80 100 120 140 160 T C (°C) 8 Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 µs 10 IC (A) IC A) 10 100 µs 1 1ms DC 1 0.1 1 10 100 VCE (V) 1000 10000 0 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V www.irf.com 3 IRG/B/S/SL15B60KD 100 90 80 70 ICE (A) 100 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V ICE (A) 90 80 70 60 50 40 30 20 10 0 60 50 40 30 20 10 0 0 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V 1 2 3 VCE (V) 4 5 6 0 1 2 3 VCE (V) 4 5 6 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 300µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 300µs 100 90 80 70 ICE (A) 60 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V IF (A) 50 40 30 20 10 0 -40°C 25°C 150°C 60 50 40 30 20 10 0 0 1 2 3 VCE (V) 4 5 6 0.0 0.5 1.0 1.5 VF (V) 2.0 2.5 3.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 300µs Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 4 www.irf.com IRG/B/S/SL15B60KD 20 18 16 14 VCE (V) VCE (V) 20 18 16 14 ICE = 5.0A ICE = 15A ICE = 30A 12 10 8 6 4 2 0 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20 VGE (V) VGE (V) ICE = 5.0A ICE = 15A ICE = 30A 12 10 8 6 4 2 0 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 18 16 14 VCE (V) ICE (A) 160 140 120 ICE = 5.0A ICE = 15A ICE = 30A 100 80 60 40 20 0 4 6 8 10 12 14 16 18 20 0 5 10 VGE (V) 15 20 VGE (V) T J = 150°C T J = 25°C T J = 25°C T J = 150°C 12 10 8 6 4 2 0 Fig. 11 - Typical VCE vs. VGE TJ = 150°C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com 5 IRG/B/S/SL15B60KD 1800 1600 1400 1200 Energy (µJ) 1000 1000 800 600 400 200 0 0 10 EOFF EON Swiching Time (ns) tdOFF 100 tdON tF tR 0 10 20 30 40 50 20 IC (A) 30 40 50 10 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 22Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 22Ω; VGE= 15V 900 800 700 600 1000 tdOFF EOFF EON Swiching Time (ns) Energy (µJ) 500 400 300 200 100 0 0 50 100 150 100 tdON tR tF 10 0 50 100 150 R G ( Ω) R G (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 15A; VGE= 15V Fig. 16- Typ. Switching Time vs. RG TJ = 150°C; L=200µH; VCE= 600V ICE= 15A; VGE= 15V 6 www.irf.com IRG/B/S/SL15B60KD 35 40 R G = 10 Ω 30 35 30 25 25 RG = 22 Ω RG = 47 Ω RG = 68 Ω IRR (A) 20 30 40 50 IRR (A) 20 20 15 15 RG = 100 Ω 10 5 10 5 0 10 0 0 20 40 60 80 100 120 IF (A) RG (Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 15A 35 30 25 3000 2500 2000 Q RR (µC) 47Ω 68 Ω 100 Ω 22Ω 1 0Ω 40A 30A 15A 1500 10A 1000 IRR (A) 20 15 10 500 5 0 0 500 1000 1500 0 0 500 1000 1500 diF /dt (A/µs) diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 15A; TJ = 150°C Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C www.irf.com 7 IRG/B/S/SL15B60KD 1000 900 800 700 10Ω 22 Ω 47 Ω 100 Ω Energy (µJ) 600 500 400 300 200 100 0 0 10 20 30 40 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 10000 16 14 300V 12 400V Capacitance (pF) 1000 Cies VGE (V) 10 8 6 100 Coes Cres 10 0 20 40 60 80 100 4 2 0 0 20 40 60 Q G , Total Gate Charge (nC) VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 15A; L = 600µH 8 www.irf.com IRG/B/S/SL15B60KD 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.01 0.02 0.01 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 τ1 τ2 Ri (°C/W) τi (sec) 0.231 0.000157 0.175 0.000849 0.201 0.011943 Ci= τi /Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.01 0.02 R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ 0.1 τJ Ri (°C/W) τi (sec) 1.164 0.000939 0.9645 0.035846 0.01 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRG/B/S/SL15B60KD L L DUT 0 VCC 80 V + - DUT 480V 1K Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT Driver DC L 360V - 5V DUT / DRIVER Rg VCC DUT Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRG/B/S/SL15B60KD 600 tF 500 25 400 40 30 500 50 400 9 0 % IC E 20 300 90% tes t current 30 ICE (A) V CE (V) 5 % IC E V CE (V) ICE (A) 300 15 200 t es t current 20 200 5% V CE 10 100 100 5 0 tR 10% tes t current 10 5% V C E 0 Eon Los s 0 E o ff L o s s 0 -1 0 0 -0 .5 0 .0 0.5 t (µ S ) 1.0 1 .5 -5 -100 -0.2 -10 -0.1 t (µS ) 0.0 0.1 WF.1- Typ. Turn-off Loss @ TJ = 150°C using CT.4 100 QRR 0 tR R -1 0 0 VCE (V) 10 % Pe a k IR R WF.2- Typ. Turn-on Loss @ TJ = 150°C using Fig. CT.4 20 500 250 10 400 V CE 200 0 VCE (V) 300 150 ICE (A) IC E ICE (A) -2 0 0 Pe a k IR R -1 0 200 100 -3 0 0 -2 0 100 50 -4 0 0 -3 0 0 0 -5 0 0 -0 . 0 6 -4 0 0 .0 4 t (µ S ) 0 .1 4 -1 0 0 -1 0 0 10 t (µ S ) 20 30 -5 0 WF.3- Typ. Reverse Recovery @ TJ = 150°C using CT.4 WF.4- Typ. Short Circuit @ TJ = 150°C using CT.3 www.irf.com 11 IRG/B/S/SL15B60KD TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS HEXFET IGBTs, CoPACK 1.15 (.045) MIN 1 2 3 LEAD 1- GATE 1- GATE ASSIGNMENTS 1 22- DRAIN - GATE COLLECTOR 323- SOURCEDRAIN EMITTER 4- COLLECTOR 4- DRAIN - SOURCE 3 4 - DRAIN 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES: 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.92 (.115) 2.64 (.104) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 L OT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE AS S EMBLY LINE "C" INTERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C 12 www.irf.com IRG/B/S/SL15B60KD D2Pak Package Outline D2Pak Part Marking Information THIS IS AN IRF530S WITH LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS SEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L www.irf.com 13 IRG/B/S/SL15B60KD TO-262 Package Outline IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C 14 www.irf.com IRG/B/S/SL15B60KD D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes:  This is only applied to TO-220AB package ‚ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. ƒ Energy losses include "tail" and diode reverse recovery. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 6/02 www.irf.com 15 This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.
IRGB15B60KD 价格&库存

很抱歉,暂时无法提供与“IRGB15B60KD”相匹配的价格&库存,您可以联系我们找货

免费人工找货