PD - 94383C
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
C
IRGB15B60KD IRGS15B60KD IRGSL15B60KD
VCES = 600V IC = 15A, TC=100°C
Features
• Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient.
G E
tsc > 10µs, TJ=150°C
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
n-channel
VCE(on) typ. = 1.8V
TO-220AB IRGB15B60KD
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec.
D2Pak IRGS15B60KD Max.
600 31 15 62 62 31 15 64 ± 20 208 83 -55 to +150
TO-262 IRGSL15B60KD Units
V
A
V W
°C 300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state) Weight
Min.
––– ––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– ––– 1.44
Max.
0.6 2.1 ––– 62 40 –––
Units
°C/W
g
www.irf.com
1
6/24/02
IRG/B/S/SL15B60KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe ICES VFM IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.05 ––– 2.10 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 10.6 Zero Gate Voltage Collector Current ––– 5.0 ––– 500 Diode Forward Voltage Drop ––– 1.20 ––– 1.20 Gate-to-Emitter Leakage Current ––– –––
Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 IC = 15A, VGE = 15V 2.50 V IC = 15A, VGE = 15V TJ = 125°C 2.60 IC = 15A, VGE = 15V TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 20A, PW=80µs 150 µA VGE = 0V, VCE = 600V 1000 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 15A 1.45 V IC = 15A TJ = 150°C ±100 nA VGE = ±20V
Ref.Fig.
5, 6,7
9, 10,11
9, 10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Short Circuit Safe Operting Area Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Ref.Fig. Max. Units Conditions 84 IC = 15A 10 nC VCC = 400V CT1 39 VGE = 15V CT4 330 µJ IC = 15A, VCC = 400V 455 VGE = 15V,RG = 22Ω, L = 200µH 785 Ls = 150nH TJ = 25°C 44 IC = 15A, VCC = 400V 22 VGE = 15V, RG = 22Ω, L = 200µH CT4 200 ns Ls = 150nH, T J = 25°C 26 CT4 470 IC = 15A, VCC = 400V 13,15 600 µJ VGE = 15V,RG = 22Ω, L = 200µH WF1WF2 1070 Ls = 150nH TJ = 150°C 14, 16 44 IC = 15A, VCC = 400V CT4 25 VGE = 15V, RG = 22Ω, L = 200µH 226 ns Ls = 150nH, T J = 150°C WF1 36 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 62A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 22Ω CT2 CT3 µs TJ = 150°C, Vp =600V,RG = 22Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 540 720 µJ TJ = 150°C 20,21 ––– 92 111 ns VCC = 400V, IF = 15A, L = 200µH CT4,WF3 ––– 29 33 A VGE = 15V,RG = 22Ω, Ls = 150nH
Typ. 56 7.0 26 220 340 560 34 16 184 20 355 490 835 34 18 203 28 850 75 35
Note to are on page 15
2
www.irf.com
IRG/B/S/SL15B60KD
35 30 25
240 200 160
Ptot (W)
0 20 40 60 80 100 120 140 160
IC (A)
20 15 10 5 0 T C (°C)
120 80 40 0 0 20 40 60 80 100 120 140 160 T C (°C)
8
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
100
10 µs 10
IC (A)
IC A)
10
100 µs 1 1ms DC
1
0.1 1 10 100 VCE (V) 1000 10000
0 10 100 1000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRG/B/S/SL15B60KD
100 90 80 70
ICE (A)
100 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V
ICE (A)
90 80 70 60 50 40 30 20 10 0
60 50 40 30 20 10 0 0
VGE VGE VGE VGE VGE
= 18V = 15V = 12V = 10V = 8.0V
1
2
3 VCE (V)
4
5
6
0
1
2
3 VCE (V)
4
5
6
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 300µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 300µs
100 90 80 70
ICE (A)
60 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V
IF (A)
50 40 30 20 10 0
-40°C 25°C 150°C
60 50 40 30 20 10 0 0
1
2
3 VCE (V)
4
5
6
0.0
0.5
1.0
1.5 VF (V)
2.0
2.5
3.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 300µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRG/B/S/SL15B60KD
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 5.0A ICE = 15A ICE = 30A 12 10 8 6 4 2 0 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20 VGE (V) VGE (V) ICE = 5.0A ICE = 15A ICE = 30A
12 10 8 6 4 2 0
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
VCE (V) ICE (A)
160 140 120 ICE = 5.0A ICE = 15A ICE = 30A 100 80 60 40 20 0 4 6 8 10 12 14 16 18 20 0 5 10 VGE (V) 15 20 VGE (V) T J = 150°C T J = 25°C T J = 25°C T J = 150°C
12 10 8 6 4 2 0
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRG/B/S/SL15B60KD
1800 1600 1400 1200
Energy (µJ)
1000
1000 800 600 400 200 0 0 10
EOFF EON
Swiching Time (ns)
tdOFF
100
tdON tF tR
0 10 20 30 40 50
20 IC (A)
30
40
50
10
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 22Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 22Ω; VGE= 15V
900 800 700 600
1000
tdOFF EOFF EON
Swiching Time (ns)
Energy (µJ)
500 400 300 200 100 0 0 50 100 150
100
tdON tR tF
10 0 50 100 150
R G ( Ω)
R G (Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 15A; VGE= 15V
Fig. 16- Typ. Switching Time vs. RG TJ = 150°C; L=200µH; VCE= 600V ICE= 15A; VGE= 15V
6
www.irf.com
IRG/B/S/SL15B60KD
35 40
R G = 10 Ω
30
35 30 25
25
RG = 22 Ω RG = 47 Ω RG = 68 Ω
IRR (A)
20 30 40 50
IRR (A)
20
20 15
15
RG = 100 Ω
10 5
10
5 0 10
0 0 20 40 60 80 100 120
IF (A)
RG (Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 15A
35 30 25
3000 2500 2000
Q RR (µC)
47Ω 68 Ω 100 Ω
22Ω
1 0Ω
40A 30A
15A 1500 10A 1000
IRR (A)
20 15 10
500
5 0 0 500 1000 1500
0 0 500 1000 1500 diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 15A; TJ = 150°C
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C
www.irf.com
7
IRG/B/S/SL15B60KD
1000 900 800 700
10Ω
22 Ω 47 Ω 100 Ω
Energy (µJ)
600 500 400 300 200 100 0 0 10 20 30
40
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C
10000
16 14 300V 12 400V
Capacitance (pF)
1000
Cies
VGE (V)
10 8 6
100
Coes Cres
10 0 20 40 60 80 100
4 2 0 0 20 40 60 Q G , Total Gate Charge (nC)
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 15A; L = 600µH
8
www.irf.com
IRG/B/S/SL15B60KD
1
Thermal Response ( Z thJC )
D = 0.50 0.20
0.1
0.10 0.05 0.01 0.02
0.01
τJ τJ τ1
R1 R1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
τ1
τ2
Ri (°C/W) τi (sec) 0.231 0.000157 0.175 0.000849 0.201 0.011943
Ci= τi /Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-6 1E-5 1E-4 1E-3 1E-2
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.01 0.02
R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ
0.1
τJ
Ri (°C/W) τi (sec) 1.164 0.000939 0.9645 0.035846
0.01
Ci= τi/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-6 1E-5 1E-4 1E-3 1E-2
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRG/B/S/SL15B60KD
L
L DUT
0
VCC
80 V
+ -
DUT
480V
1K
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp / DUT
Driver
DC
L
360V
- 5V DUT / DRIVER
Rg
VCC
DUT
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRG/B/S/SL15B60KD
600 tF 500 25
400 40
30
500
50
400
9 0 % IC E
20
300
90% tes t current
30 ICE (A)
V CE (V)
5 % IC E
V CE (V)
ICE (A)
300
15
200
t es t current
20
200
5% V CE
10
100
100
5
0
tR
10% tes t current
10
5% V C E 0
Eon Los s
0
E o ff L o s s
0
-1 0 0 -0 .5 0 .0 0.5 t (µ S ) 1.0 1 .5
-5
-100 -0.2
-10 -0.1 t (µS ) 0.0 0.1
WF.1- Typ. Turn-off Loss @ TJ = 150°C using CT.4
100 QRR 0 tR R -1 0 0 VCE (V)
10 % Pe a k IR R
WF.2- Typ. Turn-on Loss @ TJ = 150°C using Fig. CT.4
20
500 250
10
400
V CE
200
0
VCE (V)
300
150 ICE (A) IC E
ICE (A)
-2 0 0
Pe a k IR R
-1 0
200
100
-3 0 0
-2 0
100
50
-4 0 0
-3 0
0
0
-5 0 0 -0 . 0 6
-4 0 0 .0 4 t (µ S ) 0 .1 4
-1 0 0 -1 0 0 10 t (µ S ) 20 30
-5 0
WF.3- Typ. Reverse Recovery @ TJ = 150°C using CT.4
WF.4- Typ. Short Circuit @ TJ = 150°C using CT.3
www.irf.com
11
IRG/B/S/SL15B60KD
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103)
10.54 (.415) 10.29 (.405)
3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)
-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
LEAD ASSIGNMENTS HEXFET IGBTs, CoPACK
1.15 (.045) MIN 1 2 3
LEAD 1- GATE 1- GATE ASSIGNMENTS 1 22- DRAIN - GATE COLLECTOR 323- SOURCEDRAIN EMITTER 4- COLLECTOR 4- DRAIN - SOURCE 3 4 - DRAIN
14.09 (.555) 13.47 (.530)
4.06 (.160) 3.55 (.140)
3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES:
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.92 (.115) 2.64 (.104)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010 L OT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE AS S EMBLY LINE "C" INTERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
12
www.irf.com
IRG/B/S/SL15B60KD
D2Pak Package Outline
D2Pak Part Marking Information
THIS IS AN IRF530S WITH LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS SEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L
www.irf.com
13
IRG/B/S/SL15B60KD
TO-262 Package Outline
IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
14
www.irf.com
IRG/B/S/SL15B60KD
D2Pak Tape & Reel Information
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Notes: This is only applied to TO-220AB package This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Energy losses include "tail" and diode reverse recovery. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 6/02
www.irf.com
15
This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.