PD - 94613A
SMPS IGBT
WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE
Applications
• • • • • • • • • • • Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies
C
IRGB20B60PD1
VCES = 600V VCE(on) typ. = 2.05V @ VGE = 15V IC = 13.0A
G E
Features
NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability
n-channel
Equivalent MOSFET Parameters RCE(on) typ. = 158mΩ ID (FET equivalent) = 20A
Benefits
• Parallel Operation for Higher Current Applications • Lower Conduction Losses and Switching Losses • Higher Switching Frequency up to 150kHz
E C G TO-220AB
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFRM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current
Max.
600 40 22 80 80 10 4 16 ±20 215 86 -55 to +150
Units
V
d
A
Diode Continous Forward Current Diode Continous Forward Current Maximum Repetitive Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw
e
V W
°C 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– 2 (0.07)
Max.
0.58 5.0 ––– 80 –––
Units
°C/W
g (oz)
1
www.irf.com
12/10/03
IRGB20B60PD1
V(BR)CES
∆V(BR)CES/∆TJ
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Min.
600 — — — — — —
Typ.
— 0.32 4.3 2.05 2.50 2.65 3.30 4.0 -11 19 1.0 0.1 1.5 1.4 —
Max. Units
— — — 2.35 2.80 3.00 3.70 5.0 — — 250 — 1.8 1.7 ±100 nA V V Ω
Conditions
VGE = 0V, IC = 500µA 1MHz, Open Collector IC = 13A, VGE = 15V IC = 20A, VGE = 15V IC = 13A, VGE = 15V, TJ = 125°C IC = 20A, VGE = 15V, TJ = 125°C
Ref.Fig
V/°C VGE = 0V, IC = 1mA (25°C-125°C)
4, 5,6,8,9
RG VCE(on)
Internal Gate Resistance Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
3.0 — — — — — — —
gfe ICES VFM IGES
IC = 250µA V mV/°C VCE = VGE, IC = 1.0mA S VCE = 50V, IC = 40A, PW = 80µs µA mA V VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 125°C IF = 4.0A, VGE = 0V IF = 4.0A, VGE = 0V, TJ = 125°C VGE = ±20V, VCE = 0V
7,8,9
10
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qgc Qge Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres Coes eff. Coes eff. (ER) RBSOA trr Qrr Irr Total Gate Charge (turn-on) Gate-to-Collector Charge (turn-on) Gate-to-Emitter Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Time Related)
Min.
— — — — — — — — — — — — — — — — — — — —
Typ.
68 24 10 95 100 195 20 5.0 115 6.0 165 150 315 19 6.0 125 13 1560 95 20 83 61
Max. Units
102 36 15 140 145 285 26 7.0 135 8.0 215 195 410 25 8.0 140 17 — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 13A VCC = 400V VGE = 15V
Conditions
Ref.Fig 17 CT1
IC = 13A, VCC = 390V VGE = +15V, RG = 10Ω, L = 200µH TJ = 25°C
CT3
f
IC = 13A, VCC = 390V VGE = +15V, RG = 10Ω, L = 200µH TJ = 25°C
CT3
fà f
IC = 13A, VCC = 390V VGE = +15V, RG = 10Ω, L = 200µH TJ = 125°C IC = 13A, VCC = 390V VGE = +15V, RG = 10Ω, L = 200µH TJ = 125°C
CT3 11,13 WF1,WF2 CT3 12,14 WF1,WF2
fÃ
16
g
Effective Output Capacitance (Energy Related) Reverse Bias Safe Operating Area Diode Reverse Recovery Time Diode Reverse Recovery Charge Peak Reverse Recovery Current
g
— —
f = 1Mhz VGE = 0V, VCE = 0V to 480V TJ = 150°C, IC = 80A
15
3 CT2
FULL SQUARE — — — — — — 28 38 40 70 2.9 3.7 42 57 60 105 5.2 6.7 A nC ns
VCC = 480V, Vp =600V Rg = 22Ω, VGE = +15V to 0V TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C IF = 4.0A, VR = 200V, di/dt = 200A/µs IF = 4.0A, VR = 200V, di/dt = 200A/µs IF = 4.0A, VR = 200V, di/dt = 200A/µs
19
21
19,20,21,22
CT5
Notes: RCE(on) typ. = equivalent on-resistance = VCE(on) typ. / IC, where VCE(on) typ. = 2.05V and IC = 13A.
ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for
applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω. Pulse width limited by max. junction temperature. Energy losses include "tail" and diode reverse recovery. Data generated with use of Diode 8ETH06.
Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES.
Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES.
2
www.irf.com
IRGB20B60PD1
45 40 35 30
IC (A)
250
200
25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 T C (°C)
Ptot (W)
150
100
50
0 0 20 40 60 80 100 120 140 160 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
Fig. 2 - Power Dissipation vs. Case Temperature
40 35 30 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V
10
25
ICE (A)
1 0 10 100 VCE (V) 1000
IC A)
20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6
Fig. 3 - Reverse Bias SOA TJ = 150°C; VGE =15V
40 35 30 25
ICE (A)
40
Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
35 30 25
ICE (A)
VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6
20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6
Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs
www.irf.com
3
IRGB20B60PD1
450 400 350 300
ICE (A)
10 9 8 T J = 25°C TJ = 125°C
VCE (V)
7 6 5 4 3 2 1 0
ICE = 20A ICE = 13A ICE = 8.0A
250 200 150 100 50 0 0 5 10 VGE (V) 15 20
0
5
10 VGE (V)
15
20
Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
10 9 8 7
VCE (V)
100
Fig. 8 - Typical VCE vs. VGE TJ = 25°C
Instantaneous Forward Current - IF (A)
ICE = 20A ICE = 13A ICE = 8.0A
10
T = 150°C J T = 125°C J T=
J
6 5 4 3 2 1 0 0 5 10
25°C
1
15
20
0.1 0.0
1.0
2.0
3.0
4.0
5.0
6.0
VGE (V)
Forward Voltage Drop - V
(V) FM
Fig. 9 - Typical VCE vs. VGE TJ = 125°C
350 300
Swiching Time (ns)
Fig. 10 - Typ. Diode Forward Characteristics tp = 80µs
1000
250
Energy (µJ)
EON
100
tdOFF
200 150 100 50 0 0 5 10 15 IC (A) 20 25 EOFF
tdON
10
tF tR
1 0 5 10 15 20 25
IC (A)
Fig. 11 - Typ. Energy Loss vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V. Diode clamp used: 8ETH06 (See C.T.3)
Fig. 12 - Typ. Switching Time vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V. Diode clamp used: 8ETH06 (See C.T.3)
4
www.irf.com
IRGB20B60PD1
250 1000
EON
200
td OFF
Swiching Time (ns)
100
Energy (µJ)
150
EOFF
tdON
10
tF tR
100
50 0 5 10 15 20 25 30 35
1 0 10 20 30 40
RG ( Ω)
RG ( Ω)
Fig. 13 - Typ. Energy Loss vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V Diode clamp used: 8ETH06 (See C.T.3)
12 10
Fig. 14 - Typ. Switching Time vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V Diode clamp used: 8ETH06 (See C.T.3)
10000
Cies
Capacitance (pF)
8
Eoes (µJ)
1000
6 4 2 0 0 100 200 300 400 500 600 700
100
Coes
Cres
10 0 20 40 60 80 100
VCE (V)
VCE (V)
Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE
16 14
1.6 1.5
Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Normalized V CE(on) (V)
0 10 20 30 40 50 60 70 80
12 10
400V
1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 -50 0 50 100 150 200
VGE (V)
8 6 4 2 0 Q G , Total Gate Charge (nC)
Fig. 17 - Typical Gate Charge vs. VGE ICE = 13A
Fig. 18 - Normalized Typical VCE(on) vs. Junction Temperature ICE = 13A; VGE = 15V
T J , Junction Temperature (°C)
www.irf.com
5
IRGB20B60PD1
50
14 VR = 200V TJ = 125°C TJ = 25°C
45
I F = 8.0A I F = 4.0A
12
10
I F = 8.0A I F = 4.0A
40
trr- (nC)
35
Irr- ( A)
8
6
30
4
25 VR = 200V TJ = 125°C TJ = 25°C 20 100
2
di f /dt - (A/µs)
1000
0 100
di f /dt - (A/µs)
1000
Fig. 19 - Typical Reverse Recovery vs. dif/dt
Fig. 20 - Typical Recovery Current vs. dif/dt
200 VR = 200V TJ = 125°C TJ = 25°C 160
1000 VR = 200V TJ = 125°C TJ = 25°C
I F = 8.0A
I F = 8.0A
di (rec) M/dt- (A /µs)
120
I F = 4.0A
I F = 4.0A
Qrr- (nC)
80 40
0 100
di f /dt - (A/µs)
1000
100 100
A
di f /dt - (A/µs)
1000
Fig. 21 - Typical Stored Charge vs. dif/dt
Fig. 22 - Typical di(rec)M/dt vs. dif/dt,
6
www.irf.com
IRGB20B60PD1
1
D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05 0.02
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4
Ri (°C/W)
0.0076 0.2696 0.1568 0.1462
0.000001 0.000270 0.001386 0.015586
τi (sec)
0.01
0.01 SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
D = 0.50
Thermal Response ( Z thJC )
1
0.20 0.10 0.05
R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ
0.1
0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
τJ
Ri (°C/W) τi (sec) 1.779 0.000226 3.223 0.001883
0.01
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB20B60PD1
L
L
0
DUT 1K
VCC
80 V Rg
DUT
480V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
PFC diode
L
R=
VCC ICM
DUT / DRIVER
Rg
VCC
Rg
DUT
VCC
Fig.C.T.3 - Switching Loss Circuit
Fig.C.T.4 - Resistive Load Circuit
REVERSE RECOVERY CIRCUIT
VR = 200V
0.01 Ω L = 70µH D.U.T. dif/dt ADJUST D G IRFP250 S
Fig. C.T.5 - Reverse Recovery Parameter Test Circuit
8
www.irf.com
IRGB20B60PD1
450 400 350 300 250 VCE (V) 200 150 100 50 0 -50 -0.20
Eoff Loss 5% V CE 90% ICE
18 16 tf 14 12 10 ICE (A) 8 6 4 2 0 -2 0.80
450 400 350 300 250 VCE (V) 200 150 100 50 0 -50 7.75
5% V CE Eon Loss tr 90% test current 10% test current TEST CURRENT
45 40 35 30 25 20 15 10 5 0 -5 8.15 I CE (A)
5% ICE
0.00
0.20
0.40
0.60
7.85
7.95 Time (µs)
8.05
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.3
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.3
3
IF 0
trr ta tb
4
2
Q rr I RRM
0.5 I RRM di(rec)M/dt 0.75 I RRM
5
1
di f /dt
4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M /dt - Peak rate of change of current during tb portion of trr
1. dif/dt - Rate of change of current through zero crossing 2. I RRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going I F to point where a line passing through 0.75 I RRM and 0.50 IRRM extrapolated to zero current
Fig. WF3 - Reverse Recovery Waveform and Definitions
www.irf.com
9
IRGB20B60PD1
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
2.87 (.113) 2.62 (.103)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS 1 - GATE 1 - GATE 2 - DRAIN 2 -COLLECTOR 3 - SOURCE 3 EMITTER 4 - DRAIN
4 - COLLECTOR
LEAD ASSIGNMENTS
14.09 (.555) 13.47 (.530)
4.06 (.160) 3.55 (.140)
3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES:
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.92 (.115) 2.64 (.104)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSA Ã GPUÃ8P9@Ã &'( 6TT@H7G@9ÃPIÃXXÃ (Ã ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃ&Ã2Ã ((& X@@FÃ ( GDI@Ã8
TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/03
10
www.irf.com