0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGB20B60PD1

IRGB20B60PD1

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGB20B60PD1 - SMPS IGBT - International Rectifier

  • 数据手册
  • 价格&库存
IRGB20B60PD1 数据手册
PD - 94613A SMPS IGBT WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE Applications • • • • • • • • • • • Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies C IRGB20B60PD1 VCES = 600V VCE(on) typ. = 2.05V @ VGE = 15V IC = 13.0A G E Features NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability n-channel Equivalent MOSFET Parameters  RCE(on) typ. = 158mΩ ID (FET equivalent) = 20A Benefits • Parallel Operation for Higher Current Applications • Lower Conduction Losses and Switching Losses • Higher Switching Frequency up to 150kHz E C G TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFRM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current Max. 600 40 22 80 80 10 4 16 ±20 215 86 -55 to +150 Units V d A Diode Continous Forward Current Diode Continous Forward Current Maximum Repetitive Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw e V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) Thermal Resistance Parameter RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Weight Min. ––– ––– ––– ––– ––– Typ. ––– ––– 0.50 ––– 2 (0.07) Max. 0.58 5.0 ––– 80 ––– Units °C/W g (oz) 1 www.irf.com 12/10/03 IRGB20B60PD1 V(BR)CES ∆V(BR)CES/∆TJ Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage Min. 600 — — — — — — Typ. — 0.32 4.3 2.05 2.50 2.65 3.30 4.0 -11 19 1.0 0.1 1.5 1.4 — Max. Units — — — 2.35 2.80 3.00 3.70 5.0 — — 250 — 1.8 1.7 ±100 nA V V Ω Conditions VGE = 0V, IC = 500µA 1MHz, Open Collector IC = 13A, VGE = 15V IC = 20A, VGE = 15V IC = 13A, VGE = 15V, TJ = 125°C IC = 20A, VGE = 15V, TJ = 125°C Ref.Fig V/°C VGE = 0V, IC = 1mA (25°C-125°C) 4, 5,6,8,9 RG VCE(on) Internal Gate Resistance Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current 3.0 — — — — — — — gfe ICES VFM IGES IC = 250µA V mV/°C VCE = VGE, IC = 1.0mA S VCE = 50V, IC = 40A, PW = 80µs µA mA V VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 125°C IF = 4.0A, VGE = 0V IF = 4.0A, VGE = 0V, TJ = 125°C VGE = ±20V, VCE = 0V 7,8,9 10 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qgc Qge Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres Coes eff. Coes eff. (ER) RBSOA trr Qrr Irr Total Gate Charge (turn-on) Gate-to-Collector Charge (turn-on) Gate-to-Emitter Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Time Related) Min. — — — — — — — — — — — — — — — — — — — — Typ. 68 24 10 95 100 195 20 5.0 115 6.0 165 150 315 19 6.0 125 13 1560 95 20 83 61 Max. Units 102 36 15 140 145 285 26 7.0 135 8.0 215 195 410 25 8.0 140 17 — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 13A VCC = 400V VGE = 15V Conditions Ref.Fig 17 CT1 IC = 13A, VCC = 390V VGE = +15V, RG = 10Ω, L = 200µH TJ = 25°C CT3 f IC = 13A, VCC = 390V VGE = +15V, RG = 10Ω, L = 200µH TJ = 25°C CT3 fà f IC = 13A, VCC = 390V VGE = +15V, RG = 10Ω, L = 200µH TJ = 125°C IC = 13A, VCC = 390V VGE = +15V, RG = 10Ω, L = 200µH TJ = 125°C CT3 11,13 WF1,WF2 CT3 12,14 WF1,WF2 fà 16 g Effective Output Capacitance (Energy Related) Reverse Bias Safe Operating Area Diode Reverse Recovery Time Diode Reverse Recovery Charge Peak Reverse Recovery Current g — — f = 1Mhz VGE = 0V, VCE = 0V to 480V TJ = 150°C, IC = 80A 15 3 CT2 FULL SQUARE — — — — — — 28 38 40 70 2.9 3.7 42 57 60 105 5.2 6.7 A nC ns VCC = 480V, Vp =600V Rg = 22Ω, VGE = +15V to 0V TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C IF = 4.0A, VR = 200V, di/dt = 200A/µs IF = 4.0A, VR = 200V, di/dt = 200A/µs IF = 4.0A, VR = 200V, di/dt = 200A/µs 19 21 19,20,21,22 CT5 Notes:  RCE(on) typ. = equivalent on-resistance = VCE(on) typ. / IC, where VCE(on) typ. = 2.05V and IC = 13A. ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions. ‚ VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω. ƒ Pulse width limited by max. junction temperature. „ Energy losses include "tail" and diode reverse recovery. Data generated with use of Diode 8ETH06. … Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES. Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES. 2 www.irf.com IRGB20B60PD1 45 40 35 30 IC (A) 250 200 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 T C (°C) Ptot (W) 150 100 50 0 0 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature 100 Fig. 2 - Power Dissipation vs. Case Temperature 40 35 30 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 10 25 ICE (A) 1 0 10 100 VCE (V) 1000 IC A) 20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6 Fig. 3 - Reverse Bias SOA TJ = 150°C; VGE =15V 40 35 30 25 ICE (A) 40 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 35 30 25 ICE (A) VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6 20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6 Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs www.irf.com 3 IRGB20B60PD1 450 400 350 300 ICE (A) 10 9 8 T J = 25°C TJ = 125°C VCE (V) 7 6 5 4 3 2 1 0 ICE = 20A ICE = 13A ICE = 8.0A 250 200 150 100 50 0 0 5 10 VGE (V) 15 20 0 5 10 VGE (V) 15 20 Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 10 9 8 7 VCE (V) 100 Fig. 8 - Typical VCE vs. VGE TJ = 25°C Instantaneous Forward Current - IF (A) ICE = 20A ICE = 13A ICE = 8.0A 10 T = 150°C J T = 125°C J T= J 6 5 4 3 2 1 0 0 5 10 25°C 1 15 20 0.1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 VGE (V) Forward Voltage Drop - V (V) FM Fig. 9 - Typical VCE vs. VGE TJ = 125°C 350 300 Swiching Time (ns) Fig. 10 - Typ. Diode Forward Characteristics tp = 80µs 1000 250 Energy (µJ) EON 100 tdOFF 200 150 100 50 0 0 5 10 15 IC (A) 20 25 EOFF tdON 10 tF tR 1 0 5 10 15 20 25 IC (A) Fig. 11 - Typ. Energy Loss vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V. Diode clamp used: 8ETH06 (See C.T.3) Fig. 12 - Typ. Switching Time vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V. Diode clamp used: 8ETH06 (See C.T.3) 4 www.irf.com IRGB20B60PD1 250 1000 EON 200 td OFF Swiching Time (ns) 100 Energy (µJ) 150 EOFF tdON 10 tF tR 100 50 0 5 10 15 20 25 30 35 1 0 10 20 30 40 RG ( Ω) RG ( Ω) Fig. 13 - Typ. Energy Loss vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V Diode clamp used: 8ETH06 (See C.T.3) 12 10 Fig. 14 - Typ. Switching Time vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V Diode clamp used: 8ETH06 (See C.T.3) 10000 Cies Capacitance (pF) 8 Eoes (µJ) 1000 6 4 2 0 0 100 200 300 400 500 600 700 100 Coes Cres 10 0 20 40 60 80 100 VCE (V) VCE (V) Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE 16 14 1.6 1.5 Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Normalized V CE(on) (V) 0 10 20 30 40 50 60 70 80 12 10 400V 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 -50 0 50 100 150 200 VGE (V) 8 6 4 2 0 Q G , Total Gate Charge (nC) Fig. 17 - Typical Gate Charge vs. VGE ICE = 13A Fig. 18 - Normalized Typical VCE(on) vs. Junction Temperature ICE = 13A; VGE = 15V T J , Junction Temperature (°C) www.irf.com 5 IRGB20B60PD1 50 14 VR = 200V TJ = 125°C TJ = 25°C 45 I F = 8.0A I F = 4.0A 12 10 I F = 8.0A I F = 4.0A 40 trr- (nC) 35 Irr- ( A) 8 6 30 4 25 VR = 200V TJ = 125°C TJ = 25°C 20 100 2 di f /dt - (A/µs) 1000 0 100 di f /dt - (A/µs) 1000 Fig. 19 - Typical Reverse Recovery vs. dif/dt Fig. 20 - Typical Recovery Current vs. dif/dt 200 VR = 200V TJ = 125°C TJ = 25°C 160 1000 VR = 200V TJ = 125°C TJ = 25°C I F = 8.0A I F = 8.0A di (rec) M/dt- (A /µs) 120 I F = 4.0A I F = 4.0A Qrr- (nC) 80 40 0 100 di f /dt - (A/µs) 1000 100 100 A di f /dt - (A/µs) 1000 Fig. 21 - Typical Stored Charge vs. dif/dt Fig. 22 - Typical di(rec)M/dt vs. dif/dt, 6 www.irf.com IRGB20B60PD1 1 D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 0.02 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4 Ri (°C/W) 0.0076 0.2696 0.1568 0.1462 0.000001 0.000270 0.001386 0.015586 τi (sec) 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 D = 0.50 Thermal Response ( Z thJC ) 1 0.20 0.10 0.05 R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ 0.1 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τJ Ri (°C/W) τi (sec) 1.779 0.000226 3.223 0.001883 0.01 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB20B60PD1 L L 0 DUT 1K VCC 80 V Rg DUT 480V Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit PFC diode L R= VCC ICM DUT / DRIVER Rg VCC Rg DUT VCC Fig.C.T.3 - Switching Loss Circuit Fig.C.T.4 - Resistive Load Circuit REVERSE RECOVERY CIRCUIT VR = 200V 0.01 Ω L = 70µH D.U.T. dif/dt ADJUST D G IRFP250 S Fig. C.T.5 - Reverse Recovery Parameter Test Circuit 8 www.irf.com IRGB20B60PD1 450 400 350 300 250 VCE (V) 200 150 100 50 0 -50 -0.20 Eoff Loss 5% V CE 90% ICE 18 16 tf 14 12 10 ICE (A) 8 6 4 2 0 -2 0.80 450 400 350 300 250 VCE (V) 200 150 100 50 0 -50 7.75 5% V CE Eon Loss tr 90% test current 10% test current TEST CURRENT 45 40 35 30 25 20 15 10 5 0 -5 8.15 I CE (A) 5% ICE 0.00 0.20 0.40 0.60 7.85 7.95 Time (µs) 8.05 Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.3 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.3 3 IF 0 trr ta tb 4 2 Q rr I RRM 0.5 I RRM di(rec)M/dt 0.75 I RRM 5 1 di f /dt 4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M /dt - Peak rate of change of current during tb portion of trr 1. dif/dt - Rate of change of current through zero crossing 2. I RRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going I F to point where a line passing through 0.75 I RRM and 0.50 IRRM extrapolated to zero current Fig. WF3 - Reverse Recovery Waveform and Definitions www.irf.com 9 IRGB20B60PD1 TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 2.87 (.113) 2.62 (.103) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS 1 - GATE 1 - GATE 2 - DRAIN 2 -COLLECTOR 3 - SOURCE 3 EMITTER 4 - DRAIN 4 - COLLECTOR LEAD ASSIGNMENTS 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES: 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.92 (.115) 2.64 (.104) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSA  à GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (à ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃ&Ã2à ((& X@@Fà ( GDI@Ã8 TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/03 10 www.irf.com
IRGB20B60PD1 价格&库存

很抱歉,暂时无法提供与“IRGB20B60PD1”相匹配的价格&库存,您可以联系我们找货

免费人工找货