PD - 97188
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features
• • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 µS short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package
C
IRGB4056DPbF
VCES = 600V IC = 12A, TC = 100°C
G E
tSC ≥ 5µs, TJ(max) = 175°C
n-channel
C
VCE(on) typ. = 1.55V
Benefits
• High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI
G Gate
E C G TO-220AB
C Collector
Max.
600 24 12 48 48 24 12 48 ±20 ±30 140 70 -55 to +175
E Emitter
Units
V
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG
Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load Current
c e
A
Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw
Continuous Gate-to-Emitter Voltage
V W
°C 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (Diode) RθCS RθJA
Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
Min.
––– ––– ––– –––
Typ.
––– ––– 0.50 80
Max.
1.07 3.66 ––– –––
Units
°C/W
1
www.irf.com
02/24/06
IRGB4056DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
Min.
600 — — — — 4.0 — — — — — — —
Typ.
— 0.30 1.55 1.90 1.97 — -18 7.7 2.0 475 2.10 1.61 —
Max. Units
— — 1.85 — — 6.5 — — 25 — 3.10 — ±100 nA V V V
Conditions
VGE = 0V, IC = 100µA
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
f
Ref.Fig CT6 CT6 5,6,7 9,10,11
V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 12A, VGE = 15V, TJ = 25°C V IC = 12A, VGE = 15V, TJ = 150°C IC = 12A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 350µA
VCE(on) VGE(th)
∆VGE(th)/∆TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
9, 10, 11, 12
gfe ICES VFM IGES
mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) S VCE = 50V, IC = 12A, PW = 80µs µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C IF = 12A IF = 12A, TJ = 175°C VGE = ±20V
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min.
— — — — — — — — — — — — — — — — — — — —
Typ.
25 7.0 11 75 225 300 31 17 83 24 185 355 540 30 18 102 41 765 52 23
Max. Units
38 11 16 118 273 391 40 24 94 31 — — — — — — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 12A VGE = 15V VCC = 400V
Conditions
Ref.Fig 24 CT1
IC = 12A, VCC = 400V, VGE = 15V RG = 22Ω , L = 200µH, LS = 150nH, TJ = 25°C
Energy losses include tail & diode reverse recovery
CT4
IC = 12A, VCC = 400V, VGE = 15V RG = 22Ω , L = 200µH, LS = 150nH, TJ = 25°C
CT4
IC = 12A, VCC = 400V, VGE=15V RG=22Ω , L=100µH, LS=150nH, TJ = 175°C IC = 12A, VCC = 400V, VGE = 15V RG = 22Ω , L = 200µH, LS = 150nH TJ = 175°C
fÃ
13, 15 CT4 WF1, WF2 14, 16 CT4 WF1 WF2 23
Energy losses include tail & diode reverse recovery
f = 1.0Mhz TJ = 175°C, IC = 48A VCC = 480V, Vp =600V Rg = 22Ω , VGE = +15V to 0V
4 CT2
FULL SQUARE 5 — — — — 280 68 19 — — — — µs µJ ns A
VCC = 400V, Vp =600V Rg = 22Ω , VGE = +15V to 0V TJ = 175°C VCC = 400V, IF = 12A VGE = 15V, Rg = 22Ω , L =200µH, Ls = 150nH
22, CT3 WF4 17, 18, 19 20, 21
WF3
Notes: VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 22Ω. This is only applied to TO-220AB package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGB4056DPbF
25 150 125 100 20
Ptot (W)
0 20 40 60 80 100 120 140 160 180 T C (°C)
15
IC (A)
75 50
10
5
25 0 0 20 40 60 80 100 120 140 160 180 T C (°C)
0
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
Fig. 2 - Power Dissipation vs. Case Temperature
100
10
10µsec
IC (A)
IC (A)
100µsec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100 VCE (V) 1000 10000 1msec DC
10
1 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V
45 40 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
45 40 35 30
Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V
ICE (A)
20 15 10 5 0 0 1 2 3 4 VCE (V) 5
ICE (A)
25
25 20 15 10 5 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
6
7
8
0
1
2
3
4 VCE (V)
5
6
7
8
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
www.irf.com
3
IRGB4056DPbF
45 40 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
80 70 60 50
IF (A)
ICE (A)
25 20 15 10 5 0 0 1 2 3 4 VCE (V) 5 6 7 8
40 30 20 10 0 0.0
-40°c 25°C 175°C
1.0
2.0 VF (V)
3.0
4.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs
20 18 16 14
VCE (V)
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
20 18 16 14
VCE (V)
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 6.0A ICE = 12A ICE = 24A
12 10 8 6 4 2 0
ICE = 6.0A ICE = 12A ICE = 24A
15
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
20 18 16 14 40 50
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
T J = 25°C T J = 175°C
VCE (V)
10 8 6 4 2 0 5 10 VGE (V)
ICE = 12A ICE = 24A
ICE (A)
12
ICE = 6.0A
30
20
10
0 15 20 0 5 VGE (V) 10 15
Fig. 11 - Typical VCE vs. VGE TJ = 175°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
4
www.irf.com
IRGB4056DPbF
800 700 600
Swiching Time (ns)
tdOFF 100 tF tdON 10 tR 1000
Energy (µJ)
500 400 300 200 100 0 0
EOFF
EON
1
10 IC (A)
20
30
5
10
15 IC (A)
20
25
Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 22Ω; VGE = 15V
500 450 400 350
Energy (µJ)
Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 22Ω; VGE = 15V
1000
EOFF
Swiching Time (ns)
tdOFF 100 tF tdON tR 10
300 250 200 150 100 50 0 25 50 75 100 125 EON
0
25
50
75
100
125
Rg ( Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V
25 RG = 10Ω
Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V
25
20
20 R G = 22Ω
IRR (A)
IRR (A)
15
10
RG = 47Ω RG = 100Ω
15
5
10
0 0 10 IF (A) 20 30
5 0 25 50 75 100 125 RG ( Ω)
Fig. 17 - Typ. Diode IRR vs. IF TJ = 175°C
Fig. 18 - Typ. Diode IRR vs. RG TJ = 175°C
www.irf.com
5
IRGB4056DPbF
25
1400 1200 24A 1000
QRR (µC)
20
10Ω 22Ω
IRR (A)
15
800 600 100Ω 400 200
47Ω 12A
10
5
6.0A
0 0 500 1000 1500 diF /dt (A/µs)
0
500
1000
1500
diF /dt (A/µs)
Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 12A; TJ = 175°C
Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C
120 110 100 90 80 70 60 50 40 30 20 8 10 12 14 16 18 VGE (V)
400 350 300
Energy (µJ)
20
R G = 10Ω R G = 22Ω R G = 47Ω
18 16 14
Time (µs)
250 200 150 100 50 0 0 10
Current (A)
12 10 8 6 4 2 0
RG = 100Ω
20 IF (A)
30
Fig. 21 - Typ. Diode ERR vs. IF TJ = 175°C
10000
Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C
16 14 12 10 8 6 4 2 0 V CES = 300V V CES = 400V
Capacitance (pF)
1000
Cies
100 Coes Cres 10 0 20 40 60 80 100 VCE (V)
VGE, Gate-to-Emitter Voltage (V)
0
5
10
15
20
25
30
Q G, Total Gate Charge (nC)
Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE ICE = 12A; L = 600µH
6
www.irf.com
IRGB4056DPbF
10
D = 0.50
Thermal Response ( Z thJC )
1
0.20 0.10 0.05
0.1
0.02 0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
τ1
τ2
Ri (°C/W) τi (sec) 0.358 0.000171 0.424 0.001361 0.287 0.009475
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi /Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
D = 0.50
Thermal Response ( Z thJC )
1
0.20 0.10 0.05
0.1
0.02 0.01
τJ τJ τ1
R1 R1 τ2
R2 R2
R3 R3 τ3
Ri (°C/W)
τC 0.821094 τ
τi (sec) 0.000233
τ1
τ2
τ3
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi /Ri Ci i/Ri
1.913817 0.001894 0.926641 0.014711
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB4056DPbF
L
L
0
D UT 1K
VC C
80 V Rg
DU T
4 80V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp / DU T
L
4x
DC
360V
- 5V DU T / D RIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
C force
400µH D1 10K C sense
DUT
Rg
VCC
G force
DUT
0.0075µ
E sense E force
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
8
www.irf.com
IRGB4056DPbF
500 25
500
50
400
20
400 tr
40
300 VCE (V)
tf
90% ICE
15
300 VCE (V)
TEST C
30
200
10
200
90% test
20
100
5% ICE 5% VCE
5
100
10% test 5% VCE
10
0 EOFF Loss -100 -0.50 0.00 0.50 1.00 1.50
0
0 EON
0
-5 2.00
-100 11.70
11.80
11.90 Time (µs)
12.00
-10 12.10
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4
25 20 15 10 5
VCE (V)
500
250
QRR tRR
400 VCE 300 ICE 200
200
150 I CE (A)
I RR (A)
0 -5 -10 -15 -20 -25 -0.05 Peak IRR
10% Peak IRR
100
100
50
0
0
0.05 time (µS)
0.15
-100 -5.00
0.00
5.00
-50 10.00
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3
www.irf.com
9
IRGB4056DPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSA Ã GPUÃ8P9@Ã &'( 6TT@H7G@9ÃPIÃXXÃ (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqÃÃA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ ( GDI@Ã8
TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/06
10
www.irf.com