0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGB4056DPBF

IRGB4056DPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGB4056DPBF - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International ...

  • 数据手册
  • 价格&库存
IRGB4056DPBF 数据手册
PD - 97188 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 µS short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package C IRGB4056DPbF VCES = 600V IC = 12A, TC = 100°C G E tSC ≥ 5µs, TJ(max) = 175°C n-channel C VCE(on) typ. = 1.55V Benefits • High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI G Gate E C G TO-220AB C Collector Max. 600 24 12 48 48 24 12 48 ±20 ±30 140 70 -55 to +175 E Emitter Units V Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load Current c e A Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw Continuous Gate-to-Emitter Voltage V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) Thermal Resistance Parameter RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Min. ––– ––– ––– ––– Typ. ––– ––– 0.50 80 Max. 1.07 3.66 ––– ––– Units °C/W 1 www.irf.com 02/24/06 IRGB4056DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ Min. 600 — — — — 4.0 — — — — — — — Typ. — 0.30 1.55 1.90 1.97 — -18 7.7 2.0 475 2.10 1.61 — Max. Units — — 1.85 — — 6.5 — — 25 — 3.10 — ±100 nA V V V Conditions VGE = 0V, IC = 100µA Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage f Ref.Fig CT6 CT6 5,6,7 9,10,11 V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 12A, VGE = 15V, TJ = 25°C V IC = 12A, VGE = 15V, TJ = 150°C IC = 12A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 350µA VCE(on) VGE(th) ∆VGE(th)/∆TJ Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current 9, 10, 11, 12 gfe ICES VFM IGES mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) S VCE = 50V, IC = 12A, PW = 80µs µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C IF = 12A IF = 12A, TJ = 175°C VGE = ±20V 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Min. — — — — — — — — — — — — — — — — — — — — Typ. 25 7.0 11 75 225 300 31 17 83 24 185 355 540 30 18 102 41 765 52 23 Max. Units 38 11 16 118 273 391 40 24 94 31 — — — — — — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 12A VGE = 15V VCC = 400V Conditions Ref.Fig 24 CT1 IC = 12A, VCC = 400V, VGE = 15V RG = 22Ω , L = 200µH, LS = 150nH, TJ = 25°C Energy losses include tail & diode reverse recovery CT4 IC = 12A, VCC = 400V, VGE = 15V RG = 22Ω , L = 200µH, LS = 150nH, TJ = 25°C CT4 IC = 12A, VCC = 400V, VGE=15V RG=22Ω , L=100µH, LS=150nH, TJ = 175°C IC = 12A, VCC = 400V, VGE = 15V RG = 22Ω , L = 200µH, LS = 150nH TJ = 175°C fà 13, 15 CT4 WF1, WF2 14, 16 CT4 WF1 WF2 23 Energy losses include tail & diode reverse recovery f = 1.0Mhz TJ = 175°C, IC = 48A VCC = 480V, Vp =600V Rg = 22Ω , VGE = +15V to 0V 4 CT2 FULL SQUARE 5 — — — — 280 68 19 — — — — µs µJ ns A VCC = 400V, Vp =600V Rg = 22Ω , VGE = +15V to 0V TJ = 175°C VCC = 400V, IF = 12A VGE = 15V, Rg = 22Ω , L =200µH, Ls = 150nH 22, CT3 WF4 17, 18, 19 20, 21 WF3 Notes:  VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 22Ω. ‚ This is only applied to TO-220AB package. ƒ Pulse width limited by max. junction temperature. „ Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 www.irf.com IRGB4056DPbF 25 150 125 100 20 Ptot (W) 0 20 40 60 80 100 120 140 160 180 T C (°C) 15 IC (A) 75 50 10 5 25 0 0 20 40 60 80 100 120 140 160 180 T C (°C) 0 Fig. 1 - Maximum DC Collector Current vs. Case Temperature 100 Fig. 2 - Power Dissipation vs. Case Temperature 100 10 10µsec IC (A) IC (A) 100µsec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100 VCE (V) 1000 10000 1msec DC 10 1 10 100 VCE (V) 1000 Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V 45 40 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 45 40 35 30 Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V ICE (A) 20 15 10 5 0 0 1 2 3 4 VCE (V) 5 ICE (A) 25 25 20 15 10 5 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 6 7 8 0 1 2 3 4 VCE (V) 5 6 7 8 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 3 IRGB4056DPbF 45 40 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 70 60 50 IF (A) ICE (A) 25 20 15 10 5 0 0 1 2 3 4 VCE (V) 5 6 7 8 40 30 20 10 0 0.0 -40°c 25°C 175°C 1.0 2.0 VF (V) 3.0 4.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 20 18 16 14 VCE (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 20 18 16 14 VCE (V) 12 10 8 6 4 2 0 5 10 VGE (V) ICE = 6.0A ICE = 12A ICE = 24A 12 10 8 6 4 2 0 ICE = 6.0A ICE = 12A ICE = 24A 15 20 5 10 VGE (V) 15 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 18 16 14 40 50 Fig. 10 - Typical VCE vs. VGE TJ = 25°C T J = 25°C T J = 175°C VCE (V) 10 8 6 4 2 0 5 10 VGE (V) ICE = 12A ICE = 24A ICE (A) 12 ICE = 6.0A 30 20 10 0 15 20 0 5 VGE (V) 10 15 Fig. 11 - Typical VCE vs. VGE TJ = 175°C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 4 www.irf.com IRGB4056DPbF 800 700 600 Swiching Time (ns) tdOFF 100 tF tdON 10 tR 1000 Energy (µJ) 500 400 300 200 100 0 0 EOFF EON 1 10 IC (A) 20 30 5 10 15 IC (A) 20 25 Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 22Ω; VGE = 15V 500 450 400 350 Energy (µJ) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 22Ω; VGE = 15V 1000 EOFF Swiching Time (ns) tdOFF 100 tF tdON tR 10 300 250 200 150 100 50 0 25 50 75 100 125 EON 0 25 50 75 100 125 Rg ( Ω) RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V 25 RG = 10Ω Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V 25 20 20 R G = 22Ω IRR (A) IRR (A) 15 10 RG = 47Ω RG = 100Ω 15 5 10 0 0 10 IF (A) 20 30 5 0 25 50 75 100 125 RG ( Ω) Fig. 17 - Typ. Diode IRR vs. IF TJ = 175°C Fig. 18 - Typ. Diode IRR vs. RG TJ = 175°C www.irf.com 5 IRGB4056DPbF 25 1400 1200 24A 1000 QRR (µC) 20 10Ω 22Ω IRR (A) 15 800 600 100Ω 400 200 47Ω 12A 10 5 6.0A 0 0 500 1000 1500 diF /dt (A/µs) 0 500 1000 1500 diF /dt (A/µs) Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 12A; TJ = 175°C Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C 120 110 100 90 80 70 60 50 40 30 20 8 10 12 14 16 18 VGE (V) 400 350 300 Energy (µJ) 20 R G = 10Ω R G = 22Ω R G = 47Ω 18 16 14 Time (µs) 250 200 150 100 50 0 0 10 Current (A) 12 10 8 6 4 2 0 RG = 100Ω 20 IF (A) 30 Fig. 21 - Typ. Diode ERR vs. IF TJ = 175°C 10000 Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C 16 14 12 10 8 6 4 2 0 V CES = 300V V CES = 400V Capacitance (pF) 1000 Cies 100 Coes Cres 10 0 20 40 60 80 100 VCE (V) VGE, Gate-to-Emitter Voltage (V) 0 5 10 15 20 25 30 Q G, Total Gate Charge (nC) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 24 - Typical Gate Charge vs. VGE ICE = 12A; L = 600µH 6 www.irf.com IRGB4056DPbF 10 D = 0.50 Thermal Response ( Z thJC ) 1 0.20 0.10 0.05 0.1 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 τ1 τ2 Ri (°C/W) τi (sec) 0.358 0.000171 0.424 0.001361 0.287 0.009475 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi /Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 0.001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 D = 0.50 Thermal Response ( Z thJC ) 1 0.20 0.10 0.05 0.1 0.02 0.01 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 Ri (°C/W) τC 0.821094 τ τi (sec) 0.000233 τ1 τ2 τ3 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi /Ri Ci i/Ri 1.913817 0.001894 0.926641 0.014711 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 0.001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB4056DPbF L L 0 D UT 1K VC C 80 V Rg DU T 4 80V Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit d io d e clamp / DU T L 4x DC 360V - 5V DU T / D RIVER Rg DUT VCC Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM C force 400µH D1 10K C sense DUT Rg VCC G force DUT 0.0075µ E sense E force Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - BVCES Filter Circuit 8 www.irf.com IRGB4056DPbF 500 25 500 50 400 20 400 tr 40 300 VCE (V) tf 90% ICE 15 300 VCE (V) TEST C 30 200 10 200 90% test 20 100 5% ICE 5% VCE 5 100 10% test 5% VCE 10 0 EOFF Loss -100 -0.50 0.00 0.50 1.00 1.50 0 0 EON 0 -5 2.00 -100 11.70 11.80 11.90 Time (µs) 12.00 -10 12.10 Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 25 20 15 10 5 VCE (V) 500 250 QRR tRR 400 VCE 300 ICE 200 200 150 I CE (A) I RR (A) 0 -5 -10 -15 -20 -25 -0.05 Peak IRR 10% Peak IRR 100 100 50 0 0 0.05 time (µS) 0.15 -100 -5.00 0.00 5.00 -50 10.00 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 www.irf.com 9 IRGB4056DPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSA  à GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqÃÃA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃÃ2Ã! X@@Fà ( GDI@Ã8 TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/06 10 www.irf.com
IRGB4056DPBF 价格&库存

很抱歉,暂时无法提供与“IRGB4056DPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货