0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGB4059DPBF

IRGB4059DPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGB4059DPBF - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEINSULATED GATE BI...

  • 数据手册
  • 价格&库存
IRGB4059DPBF 数据手册
PD - 97072A IRGB4059DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • • Low VCE (on) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 °C 5µs SCSOA Square RBSOA 100% of The Parts Tested for 4X Rated Current (ILM) Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package G E C VCES = 600V IC = 4.0A, TC = 100°C tsc > 5µs, Tjmax = 175°C n-channel C VCE(on) typ. = 1.75V Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI E G C TO-220AB G C E Gate Collector Emitter Absolute Maximum Ratings Parameter VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C IF@TC=100°C IFM VGE PD @ TC =25° PD @ TC =100° TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current c Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Max. 600 8 4 16 16 8 4 16 ± 20 ± 30 56 28 -55 to + 175 300 (0.063 in. (1.6mm) from case) Units V A V W °C Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT e Junction-to-Case - Diode e Case-toSink, flat, greased surface Junction-to-Ambient, typical socket mount e Weight 0.5 80 1.44 Min. Typ. Max. 2.70 6.30 Units °C/W g 1 www.irf.com 4/14/06 IRGB4059DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ Min. Typ. Max. Units 600 — — — — 4.0 — — — — — — — -18 2.0 1 280 1.60 1.30 — — 0.3 1.75 2.15 2.20 — — 2.05 — — 6.5 — — 25 — 2.30 — ±100 nA V V Conditions VGE = 0V,Ic =100 µA Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage o V/°C VGE = 0V, Ic = 250 µA ( 25 -175 C ) IC = 4A, VGE = 15V, TJ = 25°C f Ref.Fig f CT6 VCE(on) VGE(th) ∆VGE(th)/∆TJ Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V IC = 4A, VGE = 15V, TJ = 150°C IC = 4A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 100 µA 5,6,7,9, 10 ,11 9,10,11,12 gfe ICES VFM IGES o mV/°C VCE = VGE, IC = 250 µA ( 25 -175 C ) S VCE = 50V, IC = 4A, PW =80µs µA µA V VGE = 0V,VCE = 600V VGE = 0v, VCE = 600V, TJ =175°C IF = 4A IF = 4A, TJ = 175°C VGE = ± 20 V 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Min. Typ. Max. Units — — — — — — — — — — — — — — — — — — — — 9 2 4 35 75 110 25 10 65 15 90 120 210 20 15 85 35 240 25 10 13 3 6 77 118 196 33 14 75 20 — — — — — — — — — — pF VGE = 0V VCC = 30V f = 1Mhz ns µJ ns µJ nC IC = 4A VCC = 400V VGE = 15V Conditions Ref.Fig 24 CT1 IC = 4A, VCC = 400V, VGE = 15V RG = 100Ω, L=1mH, LS= 150nH, TJ = 25°C Energy losses include tail and diode reverse recovery CT4 IC = 4A, VCC = 400V RG = 100Ω, L=1mH, LS= 150nH TJ = 25°C IC = 4A, VCC = 400V, VGE = 15V RG = 100Ω, L=1mH, LS= 150nH, TJ = 175°C Energy losses include tail and diode reverse recovery 13,15 CT4 WF1,WF2 14,16 CT4 W F1,WF2 CT4 IC = 4A, VCC = 400V RG = 100Ω, L=1mH, LS= 150nH TJ = 175°C 22 TJ = 175°C, IC = 16A FULL SQUARE VCC = 480V, Vp =600V Rg = 100Ω, VGE = +15V to 0V SCSOA Erec trr Irr Short Circuir Safe Operating Area Reverse recovery energy of the diode Diode Reverse recovery time Peak Reverse Recovery Current 5 145 55 11 µs µJ ns A VCC = 400V, Vp =600V RG = 100Ω, VGE = +15V to 0V TJ = 175 C VCC = 400V, IF = 4A VGE = 15V, Rg = 100Ω, L=1mH, LS=150nH o 4 CT2 22, CT3 WF4 17,18,19 20,21 WF3 Notes: VCC = 80% (VCES), VGE = 15V, L = 100 µH, RG = 100 Ω. ‚ Pulse width limited by max. junction temperature. ƒRθ is measured at TJ approximately 90°C „Refer to AN-1086 for guide lines for measuring V(BR)CES safely 2 www.irf.com IRGB4059DPbF 9 8 7 6 IC (A) 60 50 40 Ptot (W) 5 4 3 2 1 0 0 20 40 60 80 100 120 140 160 180 TC (°C) 30 20 10 0 0 20 40 60 80 100 120 140 160 180 TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature 100 100 Fig. 2 - Power Dissipation vs. Case Temperature 10 IC (A) 10 µs IC A) 10 100 µs 1 1ms DC 0.1 1 10 VCE (V) 100 1000 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 175°C 16 VGE = 18V 16 Fig. 4 - Reverse Bias SOA TJ = 175°C; VCE = 15V VGE = 18V 12 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 12 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 8 8 4 4 0 0 2 4 VCE (V) 6 8 0 0 2 4 VCE (V) 6 8 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 3 IRGB4059DPbF 16 VGE = 18V 12 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V IF (A) 80 70 60 50 40 30 -40°C 25°C 175°C ICE (A) 8 4 20 10 0 0 2 4 VCE (V) 6 8 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 VF (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 20 18 16 14 VCE (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 20 18 16 ICE = 2.0A VCE (V) 12 10 8 6 4 2 0 5 10 ICE = 4.0A ICE = 8.0A 14 12 10 8 6 4 2 0 ICE = 2.0A ICE = 4.0A ICE = 8.0A 15 VGE (V) 20 5 10 VGE (V) 15 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 18 16 14 VCE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C 18 16 TJ = 25°C TJ = 175°C ICE = 2.0A 14 12 ICE (A) 12 10 8 6 4 2 0 5 10 ICE = 4.0A ICE = 8.0A 10 8 6 4 2 0 15 VGE (V) 20 0 5 10 VGE (V) 15 20 Fig. 11 - Typical VCE vs. VGE TJ = 175°C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 4 www.irf.com IRGB4059DPbF 250 1000 200 Swiching Time (ns) 100 tdOFF tF tdON Energy (µJ) 150 EOFF 100 EON 10 50 tR 0 0 5 I C (A) 10 1 0 5 10 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1mH; VCE = 400V, RG = 100Ω; VGE = 15V. 140 120 100 1000 Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L=1mH; VCE= 400V RG= 100Ω; VGE= 15V EOFF Swiching Time (ns) Energy (µJ) 80 60 40 20 0 0 25 50 EON 100 tdOFF tF tdON 10 tR 75 100 125 1 0 25 50 75 100 125 Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1mH; VCE = 400V, ICE = 4A; VGE = 15V 18 16 14 12 RG (Ω) Fig. 16- Typ. Switching Time vs. RG TJ = 175°C; L=1mH; VCE= 400V ICE= 4A; VGE= 15V 18 16 14 12 RG (Ω) RG =10 Ω RG =22 Ω IRR (A) IRR (A) 10 10 8 6 4 2 0 0 5 RG =47 Ω 10 8 6 4 2 0 0 25 50 75 100 125 RG = 100 Ω IF (A) RG (Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 175°C Fig. 18 - Typical Diode IRR vs. RG TJ = 175°C; IF = 4.0A www.irf.com 5 IRGB4059DPbF 20 800 700 22Ω 47 Ω 100Ω 10Ω 8.0A 15 600 QRR (nC) 500 400 300 200 100 4.0A IRR (A) 10 2.0A 5 0 0 500 1000 0 0 500 1000 1500 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 4A; TJ = 175°C 250 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 175°C 25 25 200 20 20 Energy (µJ) 10 Ω 100 22 Ω 47 Ω 100 Ω Time (µs) 150 15 10 10 50 5 5 0 0 5 10 0 8 10 12 14 16 18 0 IF (A) VGE (V) Fig. 21 - Typical Diode ERR vs. IF TJ = 175°C 1000 Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C 16 Cies 14 12 300V 400V Capacitance (pF) 100 VGE (V) 10 8 6 Coes 10 Cres 4 2 1 0 20 40 60 80 100 0 0 2 4 6 8 10 VCE (V) Q G, Total Gate Charge (nC) Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 24 - Typical Gate Charge vs. VGE ICE = 4A, L=600µH 6 www.irf.com Current (A) 15 IRGB4059DPbF 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τC τ3 τ Ri (°C/W) τι (sec) τ1 τ2 τ3 0.01 Ci= τ i/Ri Ci= τi/Ri 0.932018 0.000205 1.112118 0.00129 0.657365 0.010446 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 J R2 R2 τ2 R3 R3 τC τ3 τ Ri (°C/W) τι (sec) τJ τ1 τ1 τ2 τ3 0.01 Ci= τi/Ri Ci= τi/Ri 1.628158 0.000205 3.159113 0.00129 1.512729 0.010446 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB4059DPbF L L 0 DUT 1K VCC 80 V + - DUT Rg 480V Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement 8 www.irf.com IRGB4059DPbF 500 400 300 VCE (V) 200 100 0 EOFF Loss -100 -0.40 -2 0.60 Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 10 8 6 tf 90% ICE 5% VCE 5% ICE 500 400 tr 300 VCE (V) 200 100 5% VCE 90% test t TEST CURRE 10% test current 25 20 15 10 5 0 EON Loss -5 12.30 4 2 0 0 -100 11.90 1.60 12.10 Time (µs) Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 10 QRR 5 tRR 500 400 VCE 300 50 40 30 ICE 20 10 0 -10 1.00 time (µS) 6.00 ICE (A) 0 VCE (V) IRR (A) 200 100 0 -5 Peak IRR 10% Peak IRR -10 -15 WF.3Recovery0.25 -0.05 Typ. Reverse0.15 0.05 @ TJ = 150°C using CT.4 time (µS) WF.3- Typ. Reverse Recovery Waveform @ TJ = 175°C using CT.4 -100 -4.00 WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3 www.irf.com 9 IRGB4059DPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN THE ASS EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead - Free" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/06 10 www.irf.com
IRGB4059DPBF 价格&库存

很抱歉,暂时无法提供与“IRGB4059DPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货