PD - 97072A
IRGB4059DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• • • • • • • • • • Low VCE (on) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 °C 5µs SCSOA Square RBSOA 100% of The Parts Tested for 4X Rated Current (ILM) Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package
G E C
VCES = 600V IC = 4.0A, TC = 100°C
tsc > 5µs, Tjmax = 175°C
n-channel
C
VCE(on) typ. = 1.75V
Benefits
• High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI
E G C
TO-220AB
G
C
E
Gate
Collector
Emitter
Absolute Maximum Ratings
Parameter
VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C IF@TC=100°C IFM VGE PD @ TC =25° PD @ TC =100° TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current c Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds
Max.
600 8 4 16 16 8 4 16 ± 20 ± 30 56 28 -55 to + 175 300 (0.063 in. (1.6mm) from case)
Units
V
A
V W °C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT e Junction-to-Case - Diode e Case-toSink, flat, greased surface Junction-to-Ambient, typical socket mount e Weight 0.5 80 1.44
Min.
Typ.
Max.
2.70 6.30
Units
°C/W g
1
www.irf.com
4/14/06
IRGB4059DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
Min. Typ. Max. Units
600 — — — — 4.0 — — — — — — — -18 2.0 1 280 1.60 1.30 — — 0.3 1.75 2.15 2.20 — — 2.05 — — 6.5 — — 25 — 2.30 — ±100 nA V V
Conditions
VGE = 0V,Ic =100 µA
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
o V/°C VGE = 0V, Ic = 250 µA ( 25 -175 C ) IC = 4A, VGE = 15V, TJ = 25°C
f
Ref.Fig
f
CT6
VCE(on) VGE(th)
∆VGE(th)/∆TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
V
IC = 4A, VGE = 15V, TJ = 150°C IC = 4A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 100 µA
5,6,7,9, 10 ,11 9,10,11,12
gfe ICES VFM IGES
o mV/°C VCE = VGE, IC = 250 µA ( 25 -175 C ) S VCE = 50V, IC = 4A, PW =80µs
µA µA V
VGE = 0V,VCE = 600V VGE = 0v, VCE = 600V, TJ =175°C IF = 4A IF = 4A, TJ = 175°C VGE = ± 20 V
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area
Min. Typ. Max. Units
— — — — — — — — — — — — — — — — — — — — 9 2 4 35 75 110 25 10 65 15 90 120 210 20 15 85 35 240 25 10 13 3 6 77 118 196 33 14 75 20 — — — — — — — — — — pF VGE = 0V VCC = 30V f = 1Mhz ns µJ ns µJ nC IC = 4A VCC = 400V VGE = 15V
Conditions
Ref.Fig 24 CT1
IC = 4A, VCC = 400V, VGE = 15V RG = 100Ω, L=1mH, LS= 150nH, TJ = 25°C
Energy losses include tail and diode reverse recovery
CT4
IC = 4A, VCC = 400V RG = 100Ω, L=1mH, LS= 150nH TJ = 25°C IC = 4A, VCC = 400V, VGE = 15V RG = 100Ω, L=1mH, LS= 150nH, TJ = 175°C
Energy losses include tail and diode reverse recovery
13,15 CT4 WF1,WF2 14,16 CT4 W F1,WF2 CT4
IC = 4A, VCC = 400V RG = 100Ω, L=1mH, LS= 150nH TJ = 175°C
22
TJ = 175°C, IC = 16A FULL SQUARE VCC = 480V, Vp =600V Rg = 100Ω, VGE = +15V to 0V SCSOA Erec trr Irr Short Circuir Safe Operating Area Reverse recovery energy of the diode Diode Reverse recovery time Peak Reverse Recovery Current 5 145 55 11 µs µJ ns A VCC = 400V, Vp =600V RG = 100Ω, VGE = +15V to 0V TJ = 175 C VCC = 400V, IF = 4A VGE = 15V, Rg = 100Ω, L=1mH, LS=150nH
o
4 CT2
22, CT3 WF4 17,18,19 20,21 WF3
Notes: VCC = 80% (VCES), VGE = 15V, L = 100 µH, RG = 100 Ω. Pulse width limited by max. junction temperature. Rθ is measured at TJ approximately 90°C Refer to AN-1086 for guide lines for measuring V(BR)CES safely
2
www.irf.com
IRGB4059DPbF
9 8 7 6
IC (A)
60 50 40
Ptot (W)
5 4 3 2 1 0 0 20 40 60 80 100 120 140 160 180 TC (°C)
30 20 10 0 0 20 40 60 80 100 120 140 160 180 TC (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
100
Fig. 2 - Power Dissipation vs. Case Temperature
10
IC (A)
10 µs
IC A)
10
100 µs 1 1ms DC 0.1 1 10 VCE (V) 100 1000
1 10 100 1000
VCE (V)
Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 175°C
16 VGE = 18V 16
Fig. 4 - Reverse Bias SOA TJ = 175°C; VCE = 15V
VGE = 18V
12
VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
12
VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
8
8
4
4
0 0 2 4 VCE (V) 6 8
0 0 2 4 VCE (V) 6 8
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
www.irf.com
3
IRGB4059DPbF
16 VGE = 18V 12 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
IF (A)
80 70 60 50 40 30 -40°C 25°C 175°C
ICE (A)
8
4
20 10
0 0 2 4 VCE (V) 6 8
0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 VF (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs
20 18 16 14
VCE (V)
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
20 18 16
ICE = 2.0A
VCE (V)
12 10 8 6 4 2 0 5 10
ICE = 4.0A ICE = 8.0A
14 12 10 8 6 4 2 0
ICE = 2.0A
ICE = 4.0A ICE = 8.0A
15 VGE (V)
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
20 18 16 14
VCE (V)
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
18 16 TJ = 25°C TJ = 175°C
ICE = 2.0A
14 12
ICE (A)
12 10 8 6 4 2 0 5 10
ICE = 4.0A ICE = 8.0A
10 8 6 4 2 0
15 VGE (V)
20
0
5
10 VGE (V)
15
20
Fig. 11 - Typical VCE vs. VGE TJ = 175°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
4
www.irf.com
IRGB4059DPbF
250
1000
200
Swiching Time (ns)
100
tdOFF tF tdON
Energy (µJ)
150 EOFF 100 EON
10
50
tR
0 0 5 I C (A) 10
1 0 5 10
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1mH; VCE = 400V, RG = 100Ω; VGE = 15V.
140 120 100 1000
Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L=1mH; VCE= 400V RG= 100Ω; VGE= 15V
EOFF
Swiching Time (ns)
Energy (µJ)
80 60 40 20 0 0 25 50
EON
100
tdOFF tF tdON
10
tR
75
100
125
1 0 25 50 75 100 125
Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1mH; VCE = 400V, ICE = 4A; VGE = 15V
18 16 14 12
RG (Ω)
Fig. 16- Typ. Switching Time vs. RG TJ = 175°C; L=1mH; VCE= 400V ICE= 4A; VGE= 15V
18 16 14 12
RG (Ω)
RG =10 Ω RG =22 Ω
IRR (A)
IRR (A)
10
10 8 6 4 2 0 0 5
RG =47 Ω
10 8 6 4 2 0 0 25 50 75 100 125
RG = 100 Ω
IF (A)
RG (Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 175°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 175°C; IF = 4.0A
www.irf.com
5
IRGB4059DPbF
20
800 700 22Ω 47 Ω 100Ω
10Ω 8.0A
15
600
QRR (nC)
500 400 300 200 100
4.0A
IRR (A)
10
2.0A
5
0 0 500 1000
0 0 500 1000 1500 diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 4A; TJ = 175°C
250
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 175°C
25
25
200
20
20
Energy (µJ)
10 Ω
100
22 Ω 47 Ω 100 Ω
Time (µs)
150
15
10
10
50
5
5
0 0 5 10
0 8 10 12 14 16 18
0
IF (A)
VGE (V)
Fig. 21 - Typical Diode ERR vs. IF TJ = 175°C
1000
Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C
16
Cies
14 12
300V
400V
Capacitance (pF)
100
VGE (V)
10 8 6
Coes
10
Cres
4 2
1 0 20 40 60 80 100
0 0 2 4 6 8 10
VCE (V)
Q G, Total Gate Charge (nC)
Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE ICE = 4A, L=600µH
6
www.irf.com
Current (A)
15
IRGB4059DPbF
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05
0.1
0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
τJ
R1 R1 τJ τ1 τ2
R2 R2
R3 R3 τC τ3 τ
Ri (°C/W)
τι (sec)
τ1
τ2
τ3
0.01
Ci= τ i/Ri Ci= τi/Ri
0.932018 0.000205 1.112118 0.00129 0.657365 0.010446
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05
0.1
0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
R1 R1
J
R2 R2 τ2
R3 R3 τC τ3 τ
Ri (°C/W)
τι (sec)
τJ τ1
τ1
τ2
τ3
0.01
Ci= τi/Ri Ci= τi/Ri
1.628158 0.000205 3.159113 0.00129 1.512729 0.010446
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB4059DPbF
L
L
0
DUT 1K
VCC
80 V
+ -
DUT Rg
480V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement
8
www.irf.com
IRGB4059DPbF
500 400 300 VCE (V) 200 100 0 EOFF Loss -100 -0.40 -2 0.60 Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4
10 8 6 tf
90% ICE 5% VCE 5% ICE
500 400 tr 300 VCE (V) 200 100
5% VCE 90% test t TEST CURRE 10% test current
25 20 15 10 5 0 EON Loss -5 12.30
4 2 0
0 -100 11.90
1.60
12.10 Time (µs)
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4
10 QRR 5 tRR
500 400 VCE 300
50 40 30 ICE 20 10 0 -10 1.00 time (µS) 6.00 ICE (A)
0
VCE (V)
IRR (A)
200 100 0
-5
Peak IRR
10% Peak IRR
-10
-15 WF.3Recovery0.25 -0.05 Typ. Reverse0.15 0.05 @ TJ = 150°C using CT.4 time (µS)
WF.3- Typ. Reverse Recovery Waveform @ TJ = 175°C using CT.4
-100 -4.00
WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3
www.irf.com
9
IRGB4059DPbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN THE ASS EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead - Free" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C
TO-220AB packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/06
10
www.irf.com