PD - 97113
IRGB4064DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• • • • • • • • • • Low VCE (on) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 °C 5µs SCSOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package
G E C
VCES = 600V IC = 10A, TC = 100°C
tsc > 5µs, Tjmax = 175°C
n-channel
C
VCE(on) typ. = 1.6V
Benefits
• High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI
E G C
TO-220AB
G
C
E
Gate
Collector
Emitter
Absolute Maximum Ratings
Parameter
VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C IF@TC=100°C IFM VGE PD @ TC =25° PD @ TC =100° TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current c Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 Screw
Max.
600 20 10 40 40 20 10 40 ±20 ±30 101 50 -55 to + 175 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Units
V
A
V W °C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT e Junction-to-Case - Diode e Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount e Weight
Min.
––– ––– ––– –––
Typ.
––– ––– 0.50 ––– 1.44
Max.
1.49 3.66 ––– 62
Units
°C/W g
1
www.irf.com
11/28/06
IRGB4064DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
Min. Typ. Max. Units
600 — — — — 4.0 — — — — — — — — 0.47 1.6 1.9 2.0 — -11 6.9 — 328 2.5 1.7 — — — 1.91 — — 6.5 — — 25 — 3.1 — ±100 nA V V S µA V V
Conditions
VGE = 0V, IC = 100µA
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
f
Ref.Fig CT6
V/°C VGE = 0V, IC = 500µA (-55°C-175°C) IC = 10A, VGE = 15V, TJ = 25°C IC = 10A, VGE = 15V, TJ = 150°C IC = 10A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 275µA VCE = 50V, IC = 10A, PW = 80µs VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C IF = 10A IF = 10A, TJ = 175°C VGE = ±20V mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C)
VCE(on) VGE(th)
∆VGE(th)/∆TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
5,6,7,9, 10 ,11 9,10,11,12
gfe ICES VFM IGES
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min. Typ. Max. Units
— — — — — — — — — — — — — — — — — — — — 21 5.3 8.9 29 200 229 27 15 79 21 99 316 415 27 16 98 33 594 49 17 32 8.0 13 71 308 339 37 23 90 30 — — — — — — — — — — pF VGE = 0V VCC = 30V f = 1.0Mhz ns µJ ns µJ nC IC = 10A VGE = 15V VCC = 400V
Conditions
Ref.Fig 24 CT1
IC = 10A, VCC = 400V, VGE = 15V RG = 22Ω, L = 1.0mH, TJ = 25°C
Energy losses include tail & diode reverse recovery CT4
IC = 10A, VCC = 400V, VGE = 15V RG = 22Ω, L = 1.0mH, TJ = 25°C
CT4
IC = 10A, VCC = 400V, VGE = 15V RG=22Ω, L=1.0mH, TJ = 175°C
fÃ
13,15 CT4 WF1,WF2 14,16 CT4 WF1,WF2
Energy losses include tail & diode reverse recovery
IC = 10A, VCC = 400V, VGE = 15V RG = 22Ω, L = 1.0mH, TJ = 175°C
22
TJ = 175°C, IC = 40A FULL SQUARE 5 — — — — 191 62 16 — — — — µs µJ ns A VCC = 480V, Vp =600V Rg = 22Ω, VGE = +15V to 0V VCC = 400V, Vp =600V Rg = 22Ω, VGE = +15V to 0V TJ = 175°C VCC = 400V, IF = 10A VGE = 15V, Rg = 22Ω, L=1.0mH
4 CT2
22, CT3 WF4 17,18,19 20,21 WF3
Notes: VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω. Pulse width limited by max. junction temperature. Rθ is measured at TJ approximately 90°C Refer to AN-1086 for guidelines for measuring V(BR)CES safely
2
www.irf.com
IRGB4064DPbF
24 20 16 12 8 4 0 0 20 40 60 80 100 120 140 160 180 TC (°C)
Ptot (W) IC (A)
120 100 80 60 40 20 0 0 20 40 60 80 100 120 140 160 180 TC (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
100
Fig. 2 - Power Dissipation vs. Case Temperature
10µsec 10
IC (A)
100µsec
IC A)
1msec DC 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 VCE (V) 100 1000
10
1 10 100 1000
VCE (V)
Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 175°C
40 VGE = 18V 40
Fig. 4 - Reverse Bias SOA TJ = 175°C; VCE = 15V
VGE = 18V
30
VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
30
VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
20
20
10
10
0 0 2 4 6 VCE (V) 8 10
0 0 2 4 6 VCE (V) 8 10
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
www.irf.com
3
IRGB4064DPbF
40 VGE = 18V 30 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20
IF (A)
80 70 60 50 40 30 -40°C 25°C 175°C
ICE (A)
10
20 10
0 0 2 4 6 VCE (V) 8 10
0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 VF (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs
20 18 16 14
VCE (V)
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
20 18 16
ICE = 5.0A
VCE (V)
14 12 10 8 6 4 2 0
ICE = 5.0A ICE = 10A ICE = 20A
12 10 8 6 4 2 0 5 10
ICE = 10A ICE = 20A
15 VGE (V)
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
20 18 16 14
VCE (V)
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
40 TJ = 25°C TJ = 175°C
ICE = 5.0A ICE = 10A ICE = 20A
ICE (A)
30
12 10 8 6 4 2 0 5 10
20
10
0 15 VGE (V) 20 0 5 10 VGE (V) 15 20
Fig. 11 - Typical VCE vs. VGE TJ = 175°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
4
www.irf.com
IRGB4064DPbF
600 500 400
Energy (µJ)
Swiching Time (ns)
100 1000
tdOFF tF tdON
300 200 100 0 0 4
EOFF
10
tR
EON
8
12 I C (A)
16
20
24
1 0 4 8 12 16 20 24
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1mH; VCE = 400V, RG = 22Ω; VGE = 15V.
350 300 250 200 150 100 50 0 0 25 50 75 100 125
Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L=1mH; VCE= 400V RG= 22Ω; VGE= 15V
1000
EOFF
EON
Swiching Time (ns)
Energy (µJ)
100
tdOFF
tdON tF tR
10 0 25 50 75 100 125
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1mH; VCE = 400V, ICE = 10A; VGE = 15V
24
Fig. 16- Typ. Switching Time vs. RG TJ = 175°C; L=1mH; VCE= 400V ICE= 10A; VGE= 15V
20
RG (Ω)
20
RG =10 Ω RG =22 Ω RG =47 Ω RG = 100 Ω
16
16
IRR (A)
12
IRR (A)
20 24
12
8
8
4
4
0 0 4 8 12 16
0 0 25 50 75 100 125
IF (A)
RG (Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 175°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 175°C; IF = 10A
www.irf.com
5
IRGB4064DPbF
20
900 800 47 Ω 22Ω
10Ω
20A
15
700
QRR (nC)
100Ω
IRR (A)
10A
600 500 5.0A 400
10
5 0 200 400 600 800 1000 1200 diF /dt (A/µs)
300 0 500 1000 1500 diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 175°C
300 250 200
IRR (A)
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 175°C
16
RG = 10Ω RG = 22Ω RG = 47Ω
80 Tsc Isc 70 60 50 40 30 20 10 0 8 10 12 VGE (V) 14 16
Current (A)
14 12
Time (µs)
10 8 6 4 2 0
150 100
RG = 100Ω 50 0 0 2 4 6 8 10 12 14 16 18 20 22 IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 175°C
1000
Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C
16
Cies
14 12
300V
400V
Capacitance (pF)
100
VGE (V)
10 8 6
Coes
10
Cres
4 2
1 0 20 40 60 80 100
0 0 4 8 12 16 20 24 Q G, Total Gate Charge (nC)
Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
VCE (V)
Fig. 24 - Typical Gate Charge vs. VGE ICE = 10A, L=600µH
6
www.irf.com
IRGB4064DPbF
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ1 τ2 τ3 τ4 τ4 τ
0.1
0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
1E-005
Ci= τi/Ri Ci i/Ri
Ri (°C/W) τι (sec) 0.007362 0 0.342317 0.000048 0.647826 0.000192 0.493231 0.001461
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.0001 0.001 0.01
0.01 1E-006
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
D = 0.50
Thermal Response ( Z thJC )
1
0.20 0.10 0.05
0.1
0.02 0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2 τC τ τ2
Ri (°C/W)
τι (sec)
τ1
1.939783 0.000975 1.721867 0.006135
0.01
Ci= τi/ Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB4064DPbF
L
L
0
DUT 1K
VCC
80 V
+ -
DUT Rg
480V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement
8
www.irf.com
IRGB4064DPbF
500 tf 400
90% ICE
10
TEST CURRENT
350
25 tr
8
275
300 VCE (V)
6 ICE (A)
VCE (V) 200
90% test current
20
200
5% ICE
4
125
10
10% test current 5% VCE
100
5% VCE Eoff Loss
2
50
5
0 -0.04
0 0.16
0.06 time(µs)
-25 -0.1
Eon Loss 0.1 time (µs)
0
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4
10 -25 -100 -175
Vce (V)
110 90 70
450
QRR tRR
5 0
VC E
375 300 225 150 75 0 Ice (A)
VF (V)
-250 -325 -400 -475 -0.05
-5
Peak IRR
IF (A)
50 30 10 -10 -5 0
IC
10% Peak IRR
-10 -15 -20
0.15 time (µS)
0.35
5 Time (uS)
10
WF.3- Typ. Reverse Recovery Waveform @ TJ = 175°C using CT.4
WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3
www.irf.com
ICE (A)
15
9
IRGB4064DPbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN THE ASS EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead - Free" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C
TO-220AB packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/06
10
www.irf.com