PD - 96222
PDP TRENCH IGBT
Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery Circuits in PDP Applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for Improved Panel Efficiency l High Repetitive Peak Current Capability l Lead Free Package
IRGB4086PbF IRGS4086PbF
Key Parameters
VCE min VCE(ON) typ. @ IC = 70A IRP max @ TC= 25°C TJ max
c
300 1.90 250 150
V V A °C
C
G E
G
C
E G
C
E
n-channel
G G ate
TO-220AB D2 Pak IRGB4086PbF IRGS4086PbF
C C ollector
E E m itter
Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications.
Absolute Maximum Ratings
Parameter
VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw
Max.
±30 70 40 250 160 63 1.3 -40 to + 150 300 10lb in (1.1N m)
Units
V A
c
W W/°C °C
x
x
N
Thermal Resistance
Parameter
RθJC (IGBT)
RθCS RθJA
Thermal Resistance Junction-to-Case-(each IGBT) Case-to-Sink (flat, greased surface) Junction-to-Ambient (typical socket mount) Weight
d
Typ.
––– 0.24 ––– 6.0 (0.21)
Max.
0.8 ––– 40 –––
Units
°C/W g (oz)
df
www.irf.com
1
02/02/09
IRGB/S4086PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
––– 0.29 1.29 1.49 1.90 2.57 2.27 ––– -11 2.0 5.0 100 ––– ––– 29 65 22 36 31 112 65 30 33 145 98 ––– 1075 1432 2250 110 58 5.0 13
Conditions
BVCES Collector-to-Emitter Breakdown Voltag 300 ∆ΒVCES/∆TJ Breakdown Voltage Temp. Coefficient ––– ––– ––– VCE(on) Static Collector-to-Emitter Voltage ––– ––– ––– VGE(th) Gate Threshold Voltage 2.6 ∆VGE(th)/∆TJ Gate Threshold Voltage Coefficient ––– ICES Collector-to-Emitter Leakage Current ––– ––– ––– IGES Gate-to-Emitter Forward Leakage ––– Gate-to-Emitter Reverse Leakage ––– gfe Forward Transconductance ––– Qg Total Gate Charge ––– Qgc Gate-to-Collector Charge ––– td(on) Turn-On delay time — tr Rise time — td(off) Turn-Off delay time — tf Fall time — td(on) Turn-On delay time — tr Rise time — td(off) Turn-Off delay time — tf Fall time — tst Shoot Through Blocking Time 100 EPULSE Energy per Pulse ––– ––– Ciss Coss Crss LC LE Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance Internal Emitter Inductance ––– ––– ––– ––– –––
––– V VGE = 0V, ICE = 1 mA ––– V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 25A 1.55 VGE = 15V, ICE = 40A 1.67 2.10 V VGE = 15V, ICE = 70A VGE = 15V, ICE = 120A 2.96 VGE = 15V, ICE = 70A, TJ = 150°C ––– 5.0 V VCE = VGE, ICE = 500µA ––– mV/°C 25 µA VCE = 300V, VGE = 0V VCE = 300V, VGE = 0V, TJ = 100°C ––– VCE = 300V, VGE = 0V, TJ = 150°C ––– 100 nA VGE = 30V VGE = -30V -100 ––– S VCE = 25V, ICE = 25A ––– nC VCE = 200V, IC = 25A, VGE = 15V ––– IC = 25A, VCC = 196V — — ns RG = 10Ω, L=200µH, LS= 200nH TJ = 25°C — — IC = 25A, VCC = 196V — — ns RG = 10Ω, L=200µH, LS= 200nH TJ = 150°C — — ––– ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V ––– µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V ––– VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V ––– ––– pF VCE = 30V
e e e e
e
––– ––– nH –––
ƒ = 1.0MHz,
See Fig.13
Between lead, 6mm (0.25in.) from package and center of die contact
Notes: Half sine wave with duty cycle = 0.1, ton=2µsec. Rθ is measured at TJ of approximately 90°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1" square PCB (FR-4 or G-10 Material).
For recomended footprint and soldering techniques refer to application note #AN-994.
2
www.irf.com
IRGB/S4086PbF
240 200 160
ICE (A)
240 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 200 160
ICE (A)
120 80 40 0 0 4 8 VCE (V)
VGE = 8.0V VGE = 6.0V
VGE = 18V VGE = 15V VGE = 12V VGE = 10V
120 80 40 0
VGE = 8.0V VGE = 6.0V
12
16
0
4
8 VCE (V)
12
16
Fig 1. Typical Output Characteristics @ 25°C
240 200 160
ICE (A)
Fig 2. Typical Output Characteristics @ 75°C
240 200 160
ICE (A)
VGE = 18V VGE = 15V VGE = 12V VGE = 10V
120 80 40 0 0 4 8 VCE (V)
VGE = 8.0V VGE = 6.0V
VGE = 18V VGE = 15V VGE = 12V VGE = 10V
120 80 40 0
VGE = 8.0V VGE = 6.0V
12
16
0
4
8 VCE (V)
12
16
Fig 3. Typical Output Characteristics @ 125°C
240 200 T J = 25°C 160 T J = 150°C
Fig 4. Typical Output Characteristics @ 150°C
10 IC = 25A 8
120 80 40 0 2 4 6 8 10 12 14 16 VGE (V)
VCE (V)
ICE (A)
6
TJ = 25°C TJ = 150°C
4
2
0 5 10 V GE (V) 15 20
Fig 5. Typical Transfer Characteristics
Fig 6. VCE(ON) vs. Gate Voltage
www.irf.com
3
IRGB/S4086PbF
80 70
300
Repetitive Peak Current (A)
IC, Collector Current (A)
60 50 40 30 20 10 0 0 25 50 75 100 125 150
200
100 ton= 2µs Duty cycle = 0.1 Half Sine Wave 0 25 50 75 100 125 150 Case Temperature (°C)
T C, Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 160 170 180 190 200 210 220 230 25°C VCC = 240V L = 220nH C = variable
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1600 1400 L = 220nH C = 0.4µF 100°C
Energy per Pulse (µJ)
Energy per Pulse (µJ)
100°C
1200 1000 800 600 400 200 150 160 170 180 190 200 210 220 230 240 VCE, Collector-to-Emitter Voltage (V) 25°C
IC, Peak Collector Current (A)
Fig 9. Typical EPULSE vs. Collector Current
2000 VCC = 240V 1600
Energy per Pulse (µJ)
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
L = 220nH t = 1µs half sine
C= 0.4µF
100
IC (A)
1200
10 µs 100 µs
800
C= 0.3µF
10
1ms
400
C= 0.2µF
1
0 25 50 75 100 125 150 TJ, Temperature (ºC)
1
10 V CE (V)
100
1000
Fig 11. EPULSE vs. Temperature
Fig 12. Forward Bias Safe Operating Area
4
www.irf.com
IRGB/S4086PbF
10000
25
ID= 25A VDS = 240V VDS = 200V VDS = 150V
VGE, Gate-to-Source Voltage (V)
Cies
20
Capacitance (pF)
1000
15
10
100
Coes Cres
10 0 100 200 300
5
0 0 20 40 60 80 100 QG Total Gate Charge (nC)
VCE (V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
1
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
D = 0.50
Thermal Response ( ZthJC )
0.20
0.1
0.10 0.05 0.02 0.01
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τC τ1 τ2 τ3 τ3 τ
Ri (°C/W)
τι (sec)
0.01
Ci= τi/Ri Ci= τ i/Ri
0.084697 0.000038 0.374206 0.001255 0.341867 0.013676
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
5
IRGB/S4086PbF
A
RG
DRIVER L
C
PULSE A
VCC
B
PULSE B
RG
Ipulse DUT
tST
Fig 16a. tst and EPULSE Test Circuit
Fig 16b. tst Test Waveforms
VCE
Energy IC Current
0
L DUT 1K VCC
Fig 16c. EPULSE Test Waveforms
Fig. 17 - Gate Charge Circuit (turn-off)
6
www.irf.com
IRGB/S4086PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSA Ã GPUÃ8P9@Ã &'( 6TT@H7G@9ÃPIÃXXÃ (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqÃÃA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ ( GDI@Ã8
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
IRGB/S4086PbF
D2Pak Package Outline
(Dimensions are shown in millimeters (inches))
D2Pak Part Marking Information
UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# For GB Production 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG Q6SUÃIVH7@S A$"T 96U@Ã8P9@
DIU@SI6UDPI6G S@8UDAD@S GPBP GPUÃ8P9@
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
8
www.irf.com
IRGB/S4086PbF
D2Pak Tape & Reel Information
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059)
0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/2009
www.irf.com
9