PD - 95616
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• • • • • • Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Maximum Junction Temperature rated at 175°C. TO-220 is available in PbF as Lead-Free
G
IRGB4B60KD1PbF IRGS4B60KD1 IRGSL4B60KD1
C
VCES = 600V IC = 7.6A, TC=100°C tsc > 10µs, TJ=150°C
E
n-channel
VCE(on) typ. = 2.1V
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. D2Pak TO-220 IRGB4B60KD1PbF IRGS4B60KD1 TO-262 IRGSL4B60KD1
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current
Max.
600 11 7.6
Units
V A
c
22 22 11 6.7 22 ±20 63 31 -55 to +175 °C 300 (0.063 in. (1.6mm) from case) V W
Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation
PD @ TC = 100°C Maximum Power Dissipation Operating Junction and TJ TSTG Storage Temperature Range Storage Temperature Range, for 10 sec.
Thermal / Mechanical Characteristics
Parameter
RθJC RθJC RθCS RθJA RθJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient Weight Junction-to-Ambient (PCB Mount, steady state)
Min.
––– ––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– ––– 1.44
Max.
2.4 6.1 ––– 62 40 –––
Units
°C/W
d
g
www.irf.com
1
8/10/04
IRGB4B60KD1PbF, IRGS/SL4B60KD1
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
— 0.28 2.1 2.5 2.6 4.5 -8.1 1.7 1.0 136 722 1.4 1.3 1.2 — — — 2.5 2.8 2.9 5.5 — — 150 600 2400 2.0 1.8 1.7 ±100 nA V µA V V
Conditions
VGE = 0V, IC = 500µA
Ref.Fig.
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — — VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM Collector-to-Emitter Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Zero Gate Voltage Collector Current Diode Forward Voltage Drop — — 3.5 — — — — — — — — IGES Gate-to-Emitter Leakage Current —
V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 4.0A, VGE = 15V, TJ = 25°C V IC = 4.0A, VGE = 15V, TJ = 150°C IC = 4.0A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 250µA
5,6,7 9,10,11
9,10,11 12
mV/°C VCE = VGE, IC = 1mA (25°C-150°C) S VCE = 50V, IC = 4.0A, PW = 80µs VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C IF = 4.0A IF = 4.0A, TJ = 150°C IF = 4.0A, TJ = 175°C VGE = ±20V
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min. Typ. Max. Units
— — — — — — — — — — — — — — — — — — — — 12 1.7 6.5 73 47 120 22 18 100 66 130 83 220 22 18 120 79 190 25 6.2 — — — 80 53 130 28 23 110 80 150 140 280 27 22 130 89 — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 4.0A VCC = 400V VGE = 15V
Conditions
Ref.Fig.
23 CT1
IC = 4.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 25°C IC = 4.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 25°C IC = 4.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 150°C IC = 4.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 150°C
CT4
e
CT4
CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2
e
22
FULL SQUARE 10 — — — — 81 93 6.3 — 100 — 7.9 µs µJ ns A
f = 1.0MHz TJ = 150°C, IC = 22A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 100Ω TJ = 150°C, Vp = 600V, RG = 100Ω VCC=360V,VGE = +15V to 0V TJ = 150°C VCC = 400V, IF = 4.0A, L = 2.5mH VGE = 15V, RG = 100Ω
4 CT2 CT3 WF4 17,18,19 20,21 CT4,WF3
Note to are on page 16
2
www.irf.com
IRGB4B60KD1PbF, IRGS/SL4B60KD1
70 60 50
Ptot (W)
12 10 8
IC (A)
40 30 20 10 0
6 4 2 0 0 20 40 60 80 100 120 140 160 180 T C (°C)
0
20
40
60
80 100 120 140 160 180 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
100
10 100µs
10
IC A)
IC (A)
1 1ms 0.1 10ms DC
1
0.01 0 1 10 100 1000 10000 VCE (V)
0 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGB4B60KD1PbF, IRGS/SL4B60KD1
30 25 20
ICE (A)
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
30 25 20 15 10 5 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
15 10 5 0 0 2 4 6 VCE (V) 8 10 12
0
2
4
6 VCE (V)
8
10
12
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
25
20
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
35 30 25
IF (A)
ICE (A)
15
20 15 10 -40°C 25°C 150°C
10
5
5 0
0 2 4 6 VCE (V) 8 10 12
0
0.0
0.5
1.0
1.5 VF (V)
2.0
2.5
3.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRGB4B60KD1PbF, IRGS/SL4B60KD1
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 2.0A ICE = 4.0A ICE = 8.0A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 2.0A ICE = 4.0A ICE = 8.0A
12 10 8 6 4 2 0
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18
ID, Drain-to-Source Current (Α)
30
16 14
VCE (V)
25
T J = 25°C
20
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 2.0A ICE = 4.0A ICE = 8.0A
15
TJ = 150°C
10
5
0
15
20
0
5
10
15
20
VGS , Gate-to-Source Voltage (V)
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs
www.irf.com
5
IRGB4B60KD1PbF, IRGS/SL4B60KD1
350 300
Swiching Time (ns)
1000
250
Energy (µJ)
EON
td OFF
100
tF tdON
200 150 100 50 0 1 2 3 4 5 6 7 8 9 10 IC (A) EOFF
10
tR
1 0 2 4 6 8 10
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=2.5mH; VCE= 400V, RG= 100Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=2.5mH; VCE= 400V RG= 100Ω; VGE= 15V
350 300 250
1000
EON
200 150 100 50 0 0 100 200 300 400 500
Swiching Time (ns)
Energy (µJ)
100
tdOFF tF
EOFF
tdON tR
10 0 100 200 300 400 500
RG ( Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=2.5mH; VCE= 400V ICE= 4.0A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=2.5mH; VCE= 400V ICE= 4.0A; VGE= 15V
6
www.irf.com
IRGB4B60KD1PbF, IRGS/SL4B60KD1
10 9 8 7
7
RG = 100Ω RG = 200Ω RG = 330Ω RG = 470Ω
6
IRR (A)
6 5 4 3 2 1 0 1 2 3 4 5 6
IRR (A)
5
4
3
2 7 8 9 10 0 100 200 300 400 500
IF (A)
RG (Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 4.0A
7
700 600 200Ω 500
Q RR (µC)
6
100Ω 8.0A
330Ω 470Ω
IRR (A)
5
400 300
4.0A
4
3
2.0A 200 100
100 150 200 250 300
2
0
50
100 150 200 250 300 350 400 diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; IF = 4.0A; TJ = 150°C
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C
www.irf.com
7
IRGB4B60KD1PbF, IRGS/SL4B60KD1
150
125
100Ω 200Ω 330Ω 470 Ω
100
Energy (µJ)
75
50
25
0 0 1 2 3 4 5 6 7 8 9 10
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C
1000
16
Cies
14 300V 12 400V
VGE (V)
40 60 80 100
Capacitance (pF)
100
Coes
10 8 6 4 2
10
Cres
1 0 20
0 0 2 4 6 8 10 12 14
VCE (V)
Q G , Total Gate Charge (nC)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 4.0A; L = 3150µH
8
www.irf.com
IRGB4B60KD1PbF, IRGS/SL4B60KD1
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
Ri (°C/W) τi (sec) 0.0429 0.000001 1.3417 1.0154 0.000178 0.000627
0.1
τ1
τ2
Ci= τi /Ri Ci i/Ri
0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
D = 0.50
Thermal Response ( Z thJC )
1
0.20 0.10 0.05 0.02
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4
0.1
0.01 SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Ri (°C/W) 0.0904 1.6662 3.5994 0.7454
τi (sec) 0.000003 0.000117 0.001610 0.048846
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGB4B60KD1PbF, IRGS/SL4B60KD1
L
L
0
DUT 1K
VCC
80 V
+ -
DUT Rg
480V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
Driver
DC
diode clamp / DUT
L
360V
- 5V DUT / DRIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C.SOA Circuit
VCC ICM
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGB4B60KD1PbF, IRGS/SL4B60KD1
700 tf 600 Vce 500 90% Ice 400 Vce (V) 300 200 Ice 100 0 Eoff Loss -100 0.4 0.6 0.8 Time (uS) 1 1.2 -2
-100 0.35
14 12 10 8 Ice (A)
Vce (V)
700 600 500 400 300 200 100 0 tr Vce Ice 90% Ice 10% Ice 5% Vce
14 12 10 8 6 4 2 0 -2 0.55 Time (uS) 0.65 Ice (A)
I (A) ICE (A)
5% Vce 5% Ice
6 4 2 0
Eon Loss 0.45
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
100 tR R 6
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
400 350 300 40 35 30 25 20 15 10 5 0 -5 30 40 50 Time (uS) 60 70
QR R
Vce
0
4
-100
2
250
-200 Vf (V)
0 If (A)
VCE (V)
Ice
200 150 100
-300 Peak IR R
10% Peak IR R
-2
-400
-4
50
-500
-6
0 -50
-600 0.05
0.15 Time (uS)
0.25
-8 0.35
Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3
www.irf.com
11
IRGB4B60KD1PbF, IRGS/SL4B60KD1
TO-220AB Package Outline
10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)
Dimensions are shown in millimeters (inches)
-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
2.87 (.113) 2.62 (.103)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN
LEAD ASSIGNMENTS
HEXFET
14.09 (.555) 13.47 (.530)
4- DRAIN
4.06 (.160) 3.55 (.140)
4- COLLECTOR
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C
12
www.irf.com
IRGB4B60KD1PbF, IRGS/SL4B60KD1
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information (Lead-Free)
T H IS IS AN IR F 5 3 0 S W IT H L OT CODE 80 2 4 AS S E M B L E D ON W W 0 2, 20 00 IN T H E AS S E M B L Y L IN E "L " N ote: "P " in as s em bly lin e po s itio n in dicates "L ead-F r ee" IN T E R N AT IO N AL R E C T IF IE R L OGO AS S E M B L Y L O T CO D E P AR T N U M B E R F 5 30 S D AT E C O D E Y E AR 0 = 2 0 0 0 W E E K 02 L IN E L
OR
IN T E R N AT IO N AL R E C T IF IE R L O GO AS S E M B L Y L OT COD E P AR T N U M B E R F 530S D AT E CO D E P = D E S IG N AT E S L E AD -F R E E P R O D U C T (O P T IO N AL ) Y E AR 0 = 2 0 0 0 W E E K 02 A = AS S E M B L Y S IT E CO D E
www.irf.com
13
IRGB4B60KD1PbF, IRGS/SL4B60KD1
TO-262 Package Outline
TO-262 Part Marking Information
E X AMP L E : T H IS IS AN IR L 3 1 03 L L OT COD E 17 8 9 AS S E M B L E D ON WW 19 , 1 9 97 IN T H E AS S E MB L Y L IN E "C" N ote: "P " in as s em bly line pos ition indicates "L ead-F ree" IN T E R N AT ION AL R E CT IF I E R L OGO AS S E M B L Y L OT COD E P AR T N U MB E R
D AT E COD E Y E AR 7 = 1 9 97 WE E K 19 L IN E C
OR
IN T E R N AT ION AL R E CT IF I E R L OGO AS S E M B L Y L OT COD E P AR T N U MB E R D AT E COD E P = D E S I GN AT E S L E AD -F R E E P R OD U CT (OP T ION AL ) Y E AR 7 = 1 9 9 7 WE E K 19 A = AS S E MB L Y S IT E COD E
14
www.irf.com
IRGB4B60KD1PbF, IRGS/SL4B60KD1
D2Pak Tape & Reel Infomation
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059)
0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Notes: VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 100Ω. When mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer
to application note #AN-994.
Energy losses include "tail" and diode reverse recovery, using Diode FD059H06A5.
TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04
www.irf.com
15