0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGB5B120KD

IRGB5B120KD

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGB5B120KD - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International R...

  • 数据手册
  • 价格&库存
IRGB5B120KD 数据手册
PD - 94385E IRGB5B120KD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. 10µs Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse Recovery Characteristics. Positive VCE (on) Temperature Coefficient. TO-220 Package. C VCES = 1200V IC = 6.0A, TC=100°C G E tsc > 10µs, TJ=150°C n-channel Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. VCE(on) typ. = 2.75V TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ T C = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current  Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. 1200 12 6.0 24 24 12 6.0 24 ± 20 89 36 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Units V A V W °C Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. ––– ––– ––– ––– ––– Typ. ––– ––– 0.50 ––– 2 (0.07) Max. 1.4 2.8 ––– 62 ––– Units °C/W g (oz) www.irf.com 1 8/18/04 IRGB5B120KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 1200 ––– Temperature Coeff. of Breakdown Voltage ––– 1.15 Collector-to-Emitter Saturation Voltage ––– 2.75 ––– 3.36 Gate Threshold Voltage 4.0 5.0 Temperature Coeff. of Threshold Voltage ––– -11 Forward Transconductance ––– 2.6 Zero Gate Voltage Collector Current ––– ––– ––– 66 Diode Forward Voltage Drop ––– 2.13 ––– 2.38 Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-125°C) 3.0 IC = 6.0A VGE = 15V 3.7 V IC = 6.0A VGE = 15V TJ = 125°C 6.0 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-125°C) ––– S VCE = 50V, IC = 6.0A, PW=80µs 100 µA VGE = 0V, VCE = 1200V 200 VGE = 0V, V CE = 1200V, TJ = 125°C 2.45 IF = 6.0A TJ = 125°C 2.75 V IF = 6.0A ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec t rr I rr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Ref.Fig. Max. Units Conditions 23 38 IC = 6.0A 5.6 nC VCC = 800V CT1 20 VGE = 15V CT4 440 µJ IC = 6.0A, VCC = 600V 440 VGE = 15V,RG = 50Ω, L =3.7mH 880 Ls = 150nH TJ = 25°C ‚ CT4 29 IC = 6.0A, VCC = 600V 27 VGE = 15V, RG = 50Ω L =3.7mH 120 ns Ls = 150nH, TJ = 25°C 25 CT4 660 IC = 6.0A, VCC = 600V 13,15 560 µJ VGE = 15V,RG = 50Ω, L =3.7mH WF1WF2 1220 Ls = 150nH TJ = 125°C ‚ 14, 16 27 IC = 6.0A, VCC = 600V CT4 25 VGE = 15V, RG = 50Ω L =3.7mH 150 ns Ls = 150nH, TJ = 125°C WF1 29 WF2 ––– VGE = 0V 22 ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 24A, Vp =1200V Reverse Bias Safe Operting Area FULL SQUARE VCC = 1000V, VGE = +15V to 0V, RG=50Ω CT2 CT3 µs TJ = 150°C, Vp =1200V, RG = 50Ω Short Circuit Safe Operting Area 10 ––– ––– WF4 VCC = 900V, VGE = +15V to 0V 17,18,19 Reverse Recovery energy of the diode ––– 360 ––– µJ TJ = 125°C 20, 21 Diode Reverse Recovery time ––– 160 ––– ns VCC = 600V, IF = 6.0A, L = 2.0mH CT4,WF3 Diode Peak Reverse Recovery Current ––– 9.0 ––– A VGE = 15V,RG = 50Ω, Ls = 150nH Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 25 3.7 13 390 330 720 22 19 100 19 440 370 810 21 18 110 22 370 33 11 Note:  VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 50Ω. ‚ Energy losses include "tail" and diode reverse recovery. 2 www.irf.com IRGB5B120KD 14 12 80 100 10 IC (A) 8 6 4 Ptot (W) 60 40 20 2 0 0 20 40 60 80 100 120 140 160 T C (°C) 0 0 50 100 T C (°C) 150 200 Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 10 µs IC (A) 10 1 100 µs DC IC A) 1 0 0.1 1ms 10ms 0.01 1 10 100 VCE (V) 1000 10000 10 100 1000 10000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V www.irf.com 3 IRGB5B120KD 20 VGE = 18V 16 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 16 ICE (A) 8 ICE (A) 0 2 4 VCE (V) 6 8 12 12 8 4 4 0 0 0 2 4 VCE (V) 6 8 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V IF (A) 20 -40°C 25°C 125°C 16 16 ICE (A) 12 VGE = 8.0V 12 8 8 4 4 0 0 2 4 VCE (V) 6 8 0 0.0 1.0 2.0 VF (V) 3.0 4.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 4 www.irf.com IRGB5B120KD 20 18 16 14 VCE (V) 20 ICE = 6.0A ICE = 12A ICE = 24A VCE (V) 18 16 14 12 10 8 6 4 2 ICE = 6.0A ICE = 12A ICE = 24A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 18 16 14 VCE (V) 50 ICE = 6.0A ICE = 12A ICE = 24A ICE (A) T J = 25°C 40 T J = 125°C 12 10 8 6 4 2 5 10 VGE (V) 15 20 30 20 10 T J = 125°C T J = 25°C 0 5 10 VGE (V) 15 20 Fig. 11 - Typical VCE vs. VGE TJ = 125°C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com 5 IRGB5B120KD 1200 1000 800 Energy (µJ) 1000 EON Swiching Time (ns) tdOFF 100 600 400 200 0 0 4 8 IC (A) EOFF tF tR 12 16 20 10 4 6 8 10 12 14 tdON IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 125°C; L=3.7mH; VCE= 600V RG= 50Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 125°C; L=3.7mH; VCE= 600V RG= 50Ω; VGE= 15V 1400 1200 1000 1000 EON tdOFF 800 600 400 200 0 0 100 200 300 400 Swiching Time (ns) Energy (µJ) EOFF 100 tR tdON tF 10 0 100 200 300 400 RG ( Ω ) RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 125°C; L=3.7mH; VCE= 600V ICE= 6.0A; VGE= 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 125°C; L=3.7mH; VCE= 600V ICE= 6.0A; VGE= 15V 6 www.irf.com IRGB5B120KD 10 10 R G = 50 Ω 8 8 IRR (A) IRR (A) 6 RG = 150 Ω 6 4 4 RG = 270 Ω 2 RG = 470 Ω 2 0 0 2 4 6 8 10 12 0 0 100 200 300 400 500 IF (A) RG ( Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 6.0A 10 1.6 50Ω 9.0A 6.0A 8 150Ω 1.2 QRR (µC) 270Ω 470Ω IRR (A) 6 0.8 3.0A 4 0.4 2 0 0 100 200 300 400 500 0 0 100 200 300 400 500 600 diF /dt (A/µs) diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; IF = 6.0A; TJ = 125°C Fig. 20 - Typical Diode QRR VCC= 600V; VGE= 15V;TJ = 125°C www.irf.com 7 IRGB5B120KD 500 400 Energy (µJ) 300 200 50 Ω 150 Ω 270 Ω 470 Ω 100 0 0 2 4 6 8 10 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 125°C 1000 16 Cies 14 12 600V 800V Capacitance (pF) 100 10 VGE (V) Coes Cres 8 6 10 4 2 1 0 20 40 60 80 100 0 0 5 10 15 20 25 30 Q G , Total Gate Charge (nC) VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 6.0A; L = 600µH 8 www.irf.com IRGB5B120KD 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 τC τ Ri (°C/W) τi (sec) 1.024 0.001014 0.378 0.017595 τ1 τ2 Ci= τi/Ri Ci= i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.02 0.01 Ri (°C/W) 1.045 1.214 0.540 τi (sec) 0.000395 0.001078 1.1386 τ1 τ2 Ci= τi /Ri Ci= i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGB5B120KD L L DUT 0 VCC 80 V Rg DUT 1000V 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit Driver D C diode clamp / DUT L 900V - 5V DUT / DRIVER Rg VCC DUT Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGB5B120KD 800 700 600 90% Ice 500 tf Vce (V) Ice (A) 400 300 5% Vce 200 100 0 Eoff Loss -100 0.2 0.4 0.6 Time (uS) 0.8 1 -1 5% Ice 2 1 0 4 3 5 8 7 6 1800 1600 1400 90% test current 1200 1000 Vce (V) 800 600 400 200 0 -200 0.3 0.4 Eon Loss 0.5 0.6 0.7 10% test current tr 5% VCE TEST CURRENT 18 16 14 12 10 8 6 4 2 0 -2 0.8 Ice (A) Tim e (uS) Fig.WF2-Typ. Turn-off Loss Waveform @ TJ =125°C using Fig. CT4 200 100 Q RR 0 tr r -100 -200 VF (V) -300 -400 -500 -600 -700 -800 - 0 .2 5 Pe a k Irr 10% Pe a k IRR 2 0 4 8 6 Fig.WF2-Typ. Turn-on Loss Waveform @ TJ =125°C using Fig. CT4 1000 900 800 700 600 60 100 VCE 80 Vce (V) -2 -4 -6 -8 -1 0 -1 2 0 .3 5 500 400 300 200 100 0 0.00 0 50.00 40 ICE 20 - 0 .1 0 0 .0 5 time ( µ s ) 0 .2 0 10.00 20.00 30.00 40.00 Time(uS) Fig.WF3-Typ. Diode Recovery Waveform @ TJ =125°C using Fig. CT4 Fig.WF4-Typ. S.C. Waveform @ TC =150°C using Fig. CT3 www.irf.com 11 Ice (A) IF (A) IRGB5B120KD TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 2.87 (.113) 2.62 (.103) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 1- GATE- DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN HEXFET 14.09 (.555) 13.47 (.530) 4- DRAIN 4.06 (.160) 3.55 (.140) 4- COLLECTOR 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C TO-220AB package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 12 www.irf.com
IRGB5B120KD 价格&库存

很抱歉,暂时无法提供与“IRGB5B120KD”相匹配的价格&库存,您可以联系我们找货

免费人工找货