PD - 95617
IRGB5B120KDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • TO-220 Package. • Lead-Free
C
VCES = 1200V IC = 6.0A, TC=100°C
G E
tsc > 10µs, TJ=150°C
n-channel
VCE(on) typ. = 2.75V
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
TO-220AB
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
1200 12 6.0 24 24 12 6.0 24 ± 20 89 36 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
V W °C
Thermal Resistance
RθJC RθJC RθCS RθJA Wt
Parameter
Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– 2 (0.07)
Max.
1.4 2.8 ––– 62 –––
Units
°C/W
www.irf.com
g (oz)
1
8/2/04
IRGB5B120KDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 1200 ––– Temperature Coeff. of Breakdown Voltage ––– 1.15 Collector-to-Emitter Saturation Voltage ––– 2.75 ––– 3.36 Gate Threshold Voltage 4.0 5.0 Temperature Coeff. of Threshold Voltage ––– -11 Forward Transconductance ––– 2.6 Zero Gate Voltage Collector Current ––– ––– ––– 66 Diode Forward Voltage Drop ––– 2.13 ––– 2.38 Gate-to-Emitter Leakage Current ––– –––
Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-125°C) 3.0 IC = 6.0A VGE = 15V 3.7 V IC = 6.0A VGE = 15V TJ = 125°C 6.0 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-125°C) ––– S VCE = 50V, IC = 6.0A, PW=80µs 100 µA VGE = 0V, VCE = 1200V 200 VGE = 0V, VCE = 1200V, TJ = 125°C 2.45 IF = 6.0A TJ = 125°C 2.75 V IF = 6.0A ±100 nA VGE = ±20V
Ref.Fig.
5, 6,7 9,10,11 9,10,11 12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec t rr I rr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Ref.Fig. Max. Units Conditions 23 38 IC = 6.0A 5.6 nC VCC = 800V CT1 20 VGE = 15V CT4 440 µJ IC = 6.0A, VCC = 600V 440 VGE = 15V,RG = 50Ω, L =3.7mH 880 Ls = 150nH TJ = 25°C CT4 29 IC = 6.0A, VCC = 600V 27 VGE = 15V, RG = 50Ω L =3.7mH 120 ns Ls = 150nH, TJ = 25°C 25 CT4 660 IC = 6.0A, VCC = 600V 13,15 560 µJ VGE = 15V,RG = 50Ω, L =3.7mH WF1WF2 1220 Ls = 150nH TJ = 125°C 14, 16 27 IC = 6.0A, VCC = 600V CT4 25 VGE = 15V, RG = 50Ω L =3.7mH 150 ns Ls = 150nH, TJ = 125°C WF1 29 WF2 ––– VGE = 0V 22 ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 24A, Vp =1200V Reverse Bias Safe Operting Area FULL SQUARE VCC = 1000V, VGE = +15V to 0V, RG=50Ω CT2 CT3 µs TJ = 150°C, Vp =1200V, RG = 50Ω Short Circuit Safe Operting Area 10 ––– ––– WF4 VCC = 900V, VGE = +15V to 0V 17,18,19 Reverse Recovery energy of the diode ––– 360 ––– µJ TJ = 125°C 20, 21 Diode Reverse Recovery time ––– 160 ––– ns VCC = 600V, IF = 6.0A, L = 2.0mH CT4,WF3 Diode Peak Reverse Recovery Current ––– 9.0 ––– A VGE = 15V,RG = 50 Ω, Ls = 150nH
Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Typ. 25 3.7 13 390 330 720 22 19 100 19 440 370 810 21 18 110 22 370 33 11
Note: VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω. Energy losses include "tail" and diode reverse recovery.
2
www.irf.com
IRGB5B120KDPbF
14 12 10
Ptot (W)
100
80
IC (A)
8 6 4
60
40
20
2 0 0 20 40 60 80 100 120 140 160 T C (°C)
0 0 50 100 T C (°C) 150 200
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
100
10 10 µs
IC (A)
10
1 DC 0.1
100 µs
IC A)
1 0
1ms 10ms
0.01 1 10 100 VCE (V) 1000 10000
10
100
1000
10000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGB5B120KDPbF
20 VGE = 18V 16 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
16
ICE (A)
8
ICE (A)
0 2 4 VCE (V) 6 8
12
12
8
4
4
0
0 0 2 4 VCE (V) 6 8
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V
IF (A)
20 -40°C 25°C 125°C
16
16
ICE (A)
12
VGE = 8.0V
12
8
8
4
4
0 0 2 4 VCE (V) 6 8
0 0.0 1.0 2.0 VF (V) 3.0 4.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRGB5B120KDPbF
20 18 16 14
VCE (V)
20
ICE = 6.0A ICE = 12A ICE = 24A
VCE (V)
18 16 14 12 10 8 6 4 2 5 10 VGE (V) 15
ICE = 6.0A ICE = 12A ICE = 24A
12 10 8 6 4 2 0 5 10 VGE (V) 15 20
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
VCE (V)
50
ICE = 6.0A ICE = 12A ICE = 24A
ICE (A)
T J = 25°C 40 T J = 125°C
12 10 8 6 4 2 5 10 VGE (V) 15 20
30
20 T J = 125°C T J = 25°C 0 5 10 VGE (V) 15 20
10
Fig. 11 - Typical VCE vs. VGE TJ = 125°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRGB5B120KDPbF
1200 1000 800
Energy (µJ)
1000
EON
Swiching Time (ns)
600 400 200 0 0 4 8 IC (A)
tdOFF
100
EOFF
tF tR
12 16 20
10 4 6 8 10 12 14
tdON
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 125°C; L=3.7mH; VCE= 600V RG= 50Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 125°C; L=3.7mH; VCE= 600V RG= 50Ω; VGE= 15V
1400 1200 1000
1000
EON
tdOFF
800 600 400 200 0 0 100 200 300 400
Swiching Time (ns)
Energy (µJ)
EOFF
100
tR tdON
tF
10 0 100 200 300 400
RG ( Ω )
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 125°C; L=3.7mH; VCE= 600V ICE= 6.0A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 125°C; L=3.7mH; VCE= 600V ICE= 6.0A; VGE= 15V
6
www.irf.com
IRGB5B120KDPbF
10
10
R G = 50 Ω
8
8
IRR (A)
IRR (A)
6
RG = 150 Ω
6
4
4
RG = 270 Ω
2
RG = 470 Ω
2
0 0 2 4 6 8 10 12
0 0 100 200 300 400 500
IF (A)
RG ( Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 6.0A
10
1.6 150Ω 270Ω 470Ω 0.8 3.0A 0.4 50Ω 9.0A 6.0A
8
1.2
QRR (µC)
IRR (A)
6
4
2
0 0 100 200 300 400 500
0 0 100 200 300 400 500 600 diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; IF = 6.0A; TJ = 125°C
Fig. 20 - Typical Diode QRR VCC= 600V; VGE= 15V;TJ = 125°C
www.irf.com
7
IRGB5B120KDPbF
500
400
Energy (µJ)
300
200
50 Ω 150 Ω 270 Ω 470 Ω
100
0 0 2 4 6 8 10
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 125°C
1000
16
Cies
14 12
600V 800V
Capacitance (pF)
100
10
VGE (V)
Coes Cres
8 6 4 2
10
1 0 20 40 60 80 100
0 0 5 10 15 20 25 30 Q G , Total Gate Charge (nC)
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 6.0A; L = 600µH
8
www.irf.com
IRGB5B120KDPbF
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
0.1
0.05 0.02 0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2 τC τ
Ri (°C/W) τi (sec) 1.024 0.001014 0.378 0.017595
τ1
τ2
0.01
Ci= τi/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
τJ
0.02 0.01
Ri (°C/W) 1.045 1.214 0.540
τi (sec) 0.000395 0.001078 1.1386
τ1
τ2
Ci= τi /Ri Ci i/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGB5B120KDPbF
L
L
0
DUT 1K
VCC
80 V Rg
DUT
1000V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
Driver
D C
diode clamp / DUT
L
900V
- 5V DUT / DRIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C. SOA Circuit
VCC ICM
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGB5B120KDPbF
800 700 600 90% Ice 500 Vce (V) 400 300 200 100 0 Eoff Loss -100 0.2 0.4 0.6 Time (uS) 0.8 1 -1 tf 5 8 7 6
1800 1600 1400 1200 1000 Vce (V)
Ice (A)
18 16 90% test current TEST CURRENT 14 12 10 8 6 10% test current tr 5% VCE 4 2 0 Eon Loss 0.3 0.4 0.5 0.6 0.7 -2 0.8 Ice (A)
4 3 2 1 0
800 600 400 200 0 -200
5% Vce 5% Ice
Tim e (uS)
Fig.WF2-Typ. Turn-off Loss Waveform @ TJ =125°C using Fig. CT4
200 100 Q RR 0 -100 -200 VF (V) -300 -400 -500 -600 -700 -800 - 0 .2 5 Pe a k Irr 10% Pe a k IRR tr r 4 2 0 8 6
Fig.WF2-Typ. Turn-on Loss Waveform @ TJ =125°C using Fig. CT4
1000 900 800 700 600 60 100
VCE
80
Vce (V)
-2 -4 -6 -8 -1 0 -1 2 0 .3 5
500 400 300 200 100 0 0.00 0 50.00 40
ICE
20
- 0 .1 0
0 .0 5 time ( µ s )
0 .2 0
10.00
20.00
30.00
40.00
Time(uS)
Fig.WF3-Typ. Diode Recovery Waveform @ TJ =125°C using Fig. CT4
Fig.WF4-Typ. S.C. Waveform @ TC =150°C using Fig. CT3
www.irf.com
11
Ice (A)
IF (A)
IRGB5B120KDPbF
TO-220AB Package Outline
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)
Dimensions are shown in millimeters (inches)
-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN
LEAD ASSIGNMENTS
HEXFET
14.09 (.555) 13.47 (.530)
4- DRAIN
4.06 (.160) 3.55 (.140)
4- COLLECTOR
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010 LOT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y LINE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C
TO-220AB package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04
12
www.irf.com
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/