0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGB6B60KD

IRGB6B60KD

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGB6B60KD - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International Re...

  • 数据手册
  • 价格&库存
IRGB6B60KD 数据手册
PD - 94381E INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C IRGB6B60KD IRGS6B60KD IRGSL6B60KD VCES = 600V IC = 7.0A, TC=100°C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. G E tsc > 10µs, TJ=150°C Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. n-channel VCE(on) typ. = 1.8V TO-220AB IRGB6B60KD D2Pak IRGS6B60KD Max. 600 13 7.0 26 26 13 7.0 26 ± 20 90 36 -55 to +150 TO-262 IRGSL6B60KD Units V Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current„ Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state)‚ Weight Min. ––– ––– ––– ––– ––– ––– Typ. ––– ––– 0.50 ––– ––– 1.44 Max. 1.4 4.4 ––– 62 40 ––– Units °C/W g www.irf.com 1 8/18/04 IRG/B/S/SL6B60KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.20 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 3.0 Zero Gate Voltage Collector Current ––– 1.0 ––– 200 Diode Forward Voltage Drop ––– 1.25 ––– 1.20 Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 V IC = 5.0A, VGE = 15V 2.50 IC = 5.0A,VGE = 15V, TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 5.0A, PW=80µs 150 µA VGE = 0V, VCE = 600V 500 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 5.0A 1.40 V IC = 5.0A TJ = 150°C ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Short Circuit Safe Operting Area Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Ref.Fig. Max. Units Conditions ––– IC = 5.0A ––– nC VCC = 400V CT1 ––– VGE = 15V CT4 210 µJ IC = 5.0A, VCC = 400V 245 VGE = 15V,R G = 100Ω, L =1.4mH 455 Ls = 150nH TJ = 25°C ƒ CT4 34 IC = 5.0A, VCC = 400V 26 VGE = 15V, RG = 100Ω L =1.4mH 230 ns Ls = 150nH, TJ = 25°C 22 CT4 260 IC = 5.0A, VCC = 400V 13,15 300 µJ VGE = 15V,R G = 100Ω, L =1.4mH WF1WF2 560 Ls = 150nH TJ = 150°C ƒ 14, 16 37 IC = 5.0A, VCC = 400V CT4 26 VGE = 15V, RG = 100Ω L =1.4mH 255 ns Ls = 150nH, TJ = 150°C WF1 27 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 26A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 100Ω CT2 CT3 µs TJ = 150°C, Vp =600V, RG = 100Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 90 175 µJ TJ = 150°C 20, 21 ––– 70 80 ns VCC = 400V, IF = 5.0A, L = 1.4mH CT4,WF3 ––– 10 14 A VGE = 15V,RG = 100Ω, Ls = 150nH Typ. 18.2 1.9 9.2 110 135 245 25 17 215 13.2 150 190 340 28 17 240 18 290 34 10 Note:  to „ are on page 15 2 www.irf.com IRG/B/S/SL6B60KD 15 100 90 80 10 Ptot (W) IC (A) 70 60 50 40 30 20 10 5 0 0 20 40 60 80 100 120 140 160 T C (°C) 0 0 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 10 µs IC (A) IC A) 10 1 100 µs DC 1ms 0.1 1 10 100 VCE (V) 1000 10000 1 0 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V www.irf.com 3 IRG/B/S/SL6B60KD 20 18 16 14 ICE (A) 20 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V ICE (A) 18 16 14 12 10 8 6 4 2 0 12 10 8 6 4 2 0 0 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V 1 2 3 VCE (V) 4 5 6 0 1 2 3 VCE (V) 4 5 6 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 20 18 16 14 ICE (A) 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V IF (A) 25 20 15 10 5 -40°C 25°C 150°C 12 10 8 6 4 2 0 0 0 1 2 3 VCE (V) 4 5 6 0.0 0.5 1.0 VF (V) 1.5 2.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 4 www.irf.com IRG/B/S/SL6B60KD 20 18 16 14 VCE (V) VCE (V) 20 18 16 14 ICE = 3.0A ICE = 5.0A ICE = 10A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 3.0A ICE = 5.0A ICE = 10A 12 10 8 6 4 2 0 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 18 16 14 VCE (V) 40 35 30 ICE = 3.0A ICE = 5.0A ICE = 10A T J = 25°C T J = 150°C 10 8 6 4 2 0 5 10 VGE (V) ICE (A) 12 25 20 15 10 5 T J = 150°C T J = 25°C 0 5 10 VGE (V) 15 20 15 20 0 Fig. 11 - Typical VCE vs. VGE TJ = 150°C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com 5 IRG/B/S/SL6B60KD 700 600 500 Energy (µJ) 1000 tdOFF Swiching Time (ns) EON 100 400 300 200 100 0 0 5 10 IC (A) 15 20 EOFF tF tdON 10 tR 1 0 5 10 15 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V 250 1000 200 EOFF Swiching Time (ns) 100 tdOFF Energy (µJ) 150 EON 100 tdON tR tF 10 50 0 0 50 100 150 200 1 0 50 100 150 200 R G ( Ω) RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V 6 www.irf.com IRG/B/S/SL6B60KD 25 20 R G = 22 Ω 20 16 RG = 47 Ω IRR (A) RG = 100 Ω 10 IRR (A) 15 12 8 RG = 150 Ω 5 4 0 0 5 10 15 20 0 0 50 100 150 200 IF (A) RG ( Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 5.0A 20 1200 1000 800 47Ω 100 Ω 600 400 200 0 0 200 400 600 800 1000 16 22Ω 10A IRR (A) 12 Q RR (µC) 150Ω 5.0A 3.0A 8 4 0 0 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 5.0A; TJ = 150°C Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C www.irf.com 7 IRG/B/S/SL6B60KD 300 22Ω 250 Energy (µJ) 200 47Ω 150 100 100 Ω 150 Ω 50 0 5 10 15 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 1000 16 Cies 14 300V 12 400V Capacitance (pF) 100 10 Coes VGE (V) 8 6 4 2 0 Cres 10 1 1 10 100 0 5 10 15 20 VCE (V) Q G , Total Gate Charge (nC) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600µH 8 www.irf.com IRG/B/S/SL6B60KD 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.01 0.02 R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.1 τJ Ri (°C/W) τi (sec) 0.708 0.00022 0.447 0.219 0.00089 0.01037 τ1 τ2 Ci= τi /Ri Ci= i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-4 1E-3 1E-2 1E-1 0.001 1E-6 1E-5 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.01 0.02 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.1 τ1 τ2 Ri (°C/W) τi (sec) 1.194 0.000172 2.424 0.001517 0.753 0.080325 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi /Ri Ci= i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-3 1E-2 1E-1 1E+0 0.001 1E-6 1E-5 1E-4 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRG/B/S/SL6B60KD L L DUT 0 VCC 80 V + - DUT 480V 1K Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT Driver DC L 360V - 5V DUT / DRIVER Rg DUT VCC Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRG/B/S/SL6B60KD 450 400 350 300 250 VCE (V) tf 4 5% V CE 5% ICE 90% ICE 9 8 7 6 5 500 25 400 20 300 TEST CURRENT 15 ICE (A) 200 150 100 50 0 -50 -0.20 Eof f Loss VCE (V) I CE (A) 200 90% test current 10 3 2 1 100 tr 0 10% test current 5% V CE 5 0 Eon Loss 0 -1 0.80 0.30 time(µs) -100 16.00 16.10 16.20 time (µs) 16.30 -5 16.40 Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 50 0 QR R -50 -100 -150 V F (V) -200 -250 -300 -350 -400 -450 -0.06 Peak IRR 10% Peak IRR Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 500 50 8 6 t RR 4 2 0 VCE (V) 400 VC E 300 IC E 40 30 ICE (A) -2 -4 -6 -8 -10 -12 0.04 0.14 0.24 time (µS) IF (A) 200 20 100 10 0 -5.00 0.00 5.00 time (µS) 10.00 0 15.00 Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF4- Typ. S.C Waveform @ TJ = 150°C using Fig. CT.3 www.irf.com 11 IRG/B/S/SL6B60KD TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS HEXFET GATE 1LEAD ASSIGNMENTS IGBTs, CoPACK 14.09 (.555) 13.47 (.530) 21- GATE DRAIN 32- DRAINSOURCE 3- SOURCE 4 - DRAIN 4- DRAIN 4.06 (.160) 3.55 (.140) 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMP L E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C 12 www.irf.com IRG/B/S/SL6B60KD D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information THIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLE D ON WW 02, 2000 IN T HE AS S EMBL Y LINE "L" Note: "P" in as sembly line pos ition indicates "L ead-F ree" INT ERNAT IONAL R ECTIFIER LOGO AS S EMBLY L OT CODE PART NUMBE R F530S DAT E CODE YEAR 0 = 2000 WE EK 02 LINE L OR INT E RNAT IONAL RE CT IF IER LOGO PART NUMBE R F 530S DAT E CODE P = DE SIGNAT ES LE AD-F RE E PRODUCT (OPT IONAL) YEAR 0 = 2000 WE EK 02 A = AS SE MBLY SIT E CODE AS S EMBLY LOT CODE www.irf.com 13 IRG/B/S/SL6B60KD TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information E XAMPLE : T HIS IS AN IRL 3103L L OT CODE 1789 AS S EMB L ED ON WW 19, 1997 IN TH E AS S E MBL Y L INE "C" Note: "P" in ass embly line pos ition indicates "Lead-Free" INT E RNAT IONAL RE CT IF IER LOGO AS S E MB LY L OT CODE PART NUMBE R DAT E CODE YE AR 7 = 1997 WE E K 19 LINE C OR INT E RNAT IONAL RE CT IF IER L OGO AS S E MB LY LOT CODE PART NUMBE R DAT E CODE P = DES IGNAT E S LE AD-F REE PRODUCT (OPTIONAL) YE AR 7 = 1997 WEE K 19 A = AS S EMB L Y S ITE CODE 14 www.irf.com IRG/B/S/SL6B60KD D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes:  This is only applied to TO-220AB package ‚ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. ƒ Energy losses include "tail" and diode reverse recovery. „ VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 100Ω. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 www.irf.com 15
IRGB6B60KD 价格&库存

很抱歉,暂时无法提供与“IRGB6B60KD”相匹配的价格&库存,您可以联系我们找货

免费人工找货