PD - 94545C
INSULATED GATE BIPOLAR TRANSISTOR
Features
• • • • Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient.
C
IRGB8B60K IRGS8B60K IRGSL8B60K
VCES = 600V IC = 20A, TC=100°C
G E
tsc>10µs, TJ=150°C
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
n-channel
VCE(on) typ. = 1.8V
TO-220AB IRGB8B60K
D2Pak IRGS8B60K
TO-262 IRGSL8B60K
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE PD @ TC = 25°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current
Max.
600 28 19
Units
V A
c
56 56 ±20 167 83 -55 to +175 °C 300 (0.063 in. (1.6mm) from case) V W
Gate-to-Emitter Voltage Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec.
PD @ TC = 100°C Maximum Power Dissipation
Thermal / Mechanical Characteristics
Parameter
RθJC RθCS RθJA RθJA Junction-to-Case- IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
–––
Typ.
––– 0.50 ––– ––– 1.44
Max.
0.90 ––– 62 40 –––
Units
°C/W
d
–––
Junction-to-Ambient (PCB Mount, Steady State)
e
––– ––– –––
g
www.irf.com
1
10/16/03
IRGB/S/SL8B60K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
— 0.57 1.8 2.2 2.3 4.5 -9.5 3.7 1.0 200 800 — — — 2.2 2.5 2.6 5.5 — — 150 500 1320 ±100 nA µA V
Conditions
VGE = 0V, IC = 500µA
Ref.Fig.
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — VCE(on) Collector-to-Emitter Voltage — — — VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Zero Gate Voltage Collector Current 3.5 — — — — — IGES Gate-to-Emitter Leakage Current —
V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 8.0A, VGE = 15V, TJ = 25°C V IC = 8.0A, VGE = 15V, TJ = 150°C IC = 8.0A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 1mA (25°C-125°C) S VCE = 50V, IC = 8.0A, PW = 80µs VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C VGE = ±20V
5,6,7 8,9,10
8,9,10, 11
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area
Min. Typ. Max. Units
— — — — — — — — — — — — — — — — — — — — 29 3.7 14 160 160 320 23 22 140 32 220 270 490 22 21 180 40 440 38 16 — — — 268 268 433 27 26 150 42 330 381 608 27 25 198 56 — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 8.0A VCC = 480V VGE = 15V
Conditions
Ref.Fig.
17 CT1
IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C
CT4
f
IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C
CT4 12,14 WF1,WF2 13,15 CT4 WF1 WF2 CT4
f
IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C
16
FULL SQUARE
f = 1.0MHz TJ = 150°C, IC = 34A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 50Ω TJ = 150°C, Vp = 600V, RG = 100Ω
4 CT2 CT3 WF3
SCSOA
Short Circuit Safe Operating Area
10
—
—
µs
VCC=360V,VGE = +15V to 0V
Notes to are on page 13.
2
www.irf.com
IRGB/S/SL8B60K
35 30 25
175 150 125
Ptot (W)
0 20 40 60 80 100 120 140 160 180 T C (°C)
IC (A)
20 15 10 5 0
100 75 50 25 0 0 20 40 60 80 100 120 140 160 180 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
100
10
100 µs 10
IC (A)
1ms 1 10ms 0.1 DC
IC A)
1 0 1 10 100 VCE (V) 1000 10000 10 100 VCE (V) 1000
0.01
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGB/S/SL8B60K
40 35 30 25
ICE (A)
40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
35 30 25 20 15 10 5 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6
0
1
2
3 VCE (V)
4
5
6
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
40 35 30 25
ICE (A)
20 15 10 5 0 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
1
2
3 VCE (V)
4
5
6
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
4
www.irf.com
IRGB/S/SL8B60K
20 18 16 14
20 18 16 14
VCE (V)
10 8 6 4 2 0 5 10
ICE = 4.0A ICE = 8.0A ICE = 16A
VCE (V)
12
12 10 8 6 4 2 0
ICE = 4.0A ICE = 8.0A ICE = 16A
15 VGE (V)
20
5
10 VGE (V)
15
20
Fig. 8 - Typical VCE vs. VGE TJ = -40°C
Fig. 9 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
100
80 T J = 25°C T J = 150°C
VCE (V)
10 8 6 4 2 0 5 10
ICE = 4.0A ICE = 8.0A ICE = 16A
ICE (A)
12
60
40 T J = 150°C TJ = 25°C 0
20
15 VGE (V)
20
0
5
10 VGE (V)
15
20
Fig. 10 - Typical VCE vs. VGE TJ = 150°C
Fig. 11 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs
www.irf.com
5
IRGB/S/SL8B60K
600 500 400
Energy (µJ)
Swiching Time (ns)
tdOFF
1000
300 200
EOFF
100
tF tdON tR
EON 100 0 0 5 10 IC (A) 15 20
10 0
5
10
15
20
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.1mH; VCE= 400V, RG= 50Ω; VGE= 15V
Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=1.1mH; VCE= 400V RG= 50Ω; VGE= 15V
700 600 500
10000
EON
EOFF
Swiching Time (ns)
1000
Energy (µJ)
400 300 200 100 0 0 100 200 300 400 500
tdOFF
100
tdON tF tR
10 0 100 200 300 400 500
RG ( Ω)
RG ( Ω)
Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V
Fig. 15 - Typ. Switching Time vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V
6
www.irf.com
IRGB/S/SL8B60K
1000
Cies
16 14 300V
Coes
12 10 400V
Capacitance (pF)
100
VGE (V)
Cres
8 6 4 2
10
1 1 10 100
0 0 5 10 15 20 25 30
VCE (V)
Q G , Total Gate Charge (nC)
Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 17 - Typical Gate Charge vs. VGE ICE = 8.0A; L = 600µH
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20
0.1
τJ R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ
0.10 0.05 0.02 0.01
Ri (°C/W) 0.491 0.409
τi (sec) 0.000190 0.001153
Ci= τi/Ri Ci i/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRGB/S/SL8B60K
L
L
0
DUT 1K
VCC
80 V
+ -
DUT Rg
480V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
Driver
DC
diode clamp / DUT
L
360V
- 5V DUT / DRIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C.SOA Circuit
R=
Fig.C.T.4 - Switching Loss Circuit
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRGB/S/SL8B60K
600 500 400 90% Ice 300 Vce (V) 5% Vce 200 5% Ice 100 0 Eoff Loss -100 -200 0 0.2 0.4 0.6 0.8 1 Time (uS) -2 -4 Ice 2 0
100 5% Vce 4
12 tf Vce 10 8 6 Ice (A)
Vce (V)
600
24
500
tr
Vce Ice 90% Ice
20
400
16
300
10% Ice
12 Ice (A)
4
200
8
0
Eon Loss 0.3 0.5 0.7 Time (uS) 0.9
0
-100
-4
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
400
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
80
350
300
60
250 Vce (V) Ice (A)
200
40
150
100
20
50
0 0.00
10.00
20.00
30.00
40.00
0 50.00
Time (uS)
Fig. WF3- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3
www.irf.com
9
IRGB/S/SL8B60K
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103)
10.54 (.415) 10.29 (.405)
3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)
-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
HEXFET
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS IGBTs, CoPACK
LEAD 1- GATE 1- GATE ASSIGNMENTS 1 22- DRAIN - GATE COLLECTOR 2 - DRAIN 3 - SOURCE 4 - DRAIN
14.09 (.555) 13.47 (.530)
4.06 (.160) 3.55 (.140)
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010 L OT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE ASSEMBLY LINE "C" INT ERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C
10
www.irf.com
IRGB/S/SL8B60K
D2Pak Package Outline
D2Pak Part Marking Information
THIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN THE ASS EMBLY LINE "L" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DATE CODE YEAR 0 = 2000 WEEK 02 LINE L
www.irf.com
11
IRGB/S/SL8B60K
TO-262 Package Outline
IGBT 1- GATE 2- COLLECTOR 3- EMITTER
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
12
www.irf.com
IRGB/S/SL8B60K
D2Pak Tape & Reel Information
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Notes: VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω. This is only applied to TO-220AB package. This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Energy losses include "tail" and diode reverse recovery, using Diode HF03D060ACE. TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/03
www.irf.com
13