PD - 9.1107
IRGBC30KD2
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• Short circuit rated -10µs @125°C, VGE = 15V • Switching-loss rating includes all "tail" losses • HEXFREDTM soft ultrafast diodes • Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve
C
Short Circuit Rated UltraFast CoPack IGBT
VCES = 600V VCE(sat) ≤ 3.8V
G
@VGE = 15V, IC = 14A
E
n-channel
Description
Co-packaged IGBTs are a natural extension of International Rectifier's well known IGBT line. They provide the convenience of an IGBT and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, applications. These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability.
Absolute Maximum Ratings
Parameter
VCES I C @ TC = 25°C I C @ TC = 100°C I CM I LM I F @ TC = 100°C I FM t sc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
TO-220AB
Max.
600 23 14 46 46 12 46 10 ± 20 100 42 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Units
V
A
µs V W
°C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
-------------------------
Typ.
----------0.50 ----2 (0.07)
Max.
1.2 2.5 -----80 ------
Units
°C/W
g (oz)
IRGBC30KD2
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Collector-to-Emitter Breakdown Voltage 600 ∆ V(BR)CES /∆ T J Temperature Coeff. of Breakdown Voltage---Collector-to-Emitter Saturation Voltage ---VCE(on) ------VGE(th) Gate Threshold Voltage 3.0 ∆V GE(th)/ ∆TJ Temperature Coeff. of Threshold Voltage ---Forward Transconductance 3.3 gfe Zero Gate Voltage Collector Current ---ICES ---V FM Diode Forward Voltage Drop ------Gate-to-Emitter Leakage Current ---IGES V(BR)CES Typ. ---0.30 2.5 3.3 2.5 ----13 6.5 ------1.4 1.3 ---Max. Units Conditions ---V VGE = 0V, IC = 250µA ---- V/°C VGE = 0V, IC = 1.0mA 3.8 IC = 14A VGE = 15V See Fig. 2, 5 ---V IC = 23A ---IC = 14A, TJ = 150°C 5.5 VCE = VGE, IC = 250µA ---- mV/°C VCE = VGE, IC = 250µA ---S VCE = 100V, IC = 14A 250 µA VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 12A See Fig. 13 1.6 IC = 12A, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Max. Units Conditions 58 IC = 14A 13 nC VCC = 400V 23 See Fig. 8 ---TJ = 25°C ---ns IC = 14A, VCC = 480V 170 VGE = 15V, RG = 23 Ω 140 Energy losses include "tail" and ---diode reverse recovery. ---mJ See Fig. 9, 10, 11, 18 2.4 ---µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 23Ω, VCPK < 500V Turn-On Delay Time ---64 ---TJ = 150°C, See Fig. 9, 10, 11, 18 t d(on) Rise Time ---- 100 ---ns IC = 14A, VCC = 480V tr t d(off) Turn-Off Delay Time ---- 190 ---VGE = 15V, RG = 23 Ω Fall Time ---- 180 ---Energy losses include "tail" and tf Total Switching Loss ---- 2.2 ---mJ diode reverse recovery. Ets Internal Emitter Inductance ---- 7.5 ---nH Measured 5mm from package LE Input Capacitance ---- 740 ---VGE = 0V Cies Coes Output Capacitance ---92 ---pF VCC = 30V See Fig. 7 Reverse Transfer Capacitance ---- 9.4 ---ƒ = 1.0MHz Cres Diode Reverse Recovery Time ---42 60 ns TJ = 25°C See Fig. t rr ---80 120 TJ = 125°C 14 IF = 12A Diode Peak Reverse Recovery Current ---- 3.5 6.0 A TJ = 25°C See Fig. Irr ---- 5.6 10 TJ = 125°C 15 VR = 200V Diode Reverse Recovery Charge ---80 180 nC TJ = 25°C See Fig. Q rr ---- 220 600 TJ = 125°C 16 di/dt = 200A/ 180 µs di(rec)M/dtDiode Peak Rate of Fall of Recovery ------A/µs TJ = 25°C See Fig. During t b ---120 Notes: ---TJ = 1 VCC=80%(V CES), VGE=20V, L=10µH, 25°C 17 Pulse width 5.0µs, single shot. RG = 23Ω , ( See fig. 19 ) Repetitive rating; VGE=20V, pulse width limited by max. junction temperature. ( See fig. 20 ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Qg Qge Q gc t d(on) tr t d(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Min. ------------------------------10 Typ. 39 8.7 15 67 120 110 94 1.1 0.5 1.6 ----
IRGBC30KD2
15 Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate dr ive as specified Turn-on losses include effects of reverse recovery Power Dissipation = 21W
12
Load Current (A)
9 60% of rated voltage 6
3
0 0.1 1 10
A
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
IC , Collector-to-Emitter Current (A)
T = 25°C J TJ = 150°C
10
IC , Collector-to-Emitter Current (A)
TJ = 150°C
10
TJ = 25°C
1
0.1 0.1 1
VGE = 15V 20µs PULSE WIDTH A
10
1 5 10
VCC = 100V 5µs PULSE WIDTH A
15 20
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
IRGBC30KD2
25
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
VGE = 15V
6.0
VGE = 15V 80µs PULSE WIDTH
20
5.0
I C = 28A
4.0
15
3.0
10
I C = 14A
2.0
I C = 7.0A
1.0
5
0 25 50 75 100 125
A
150
0.0 -60
A
-40 -20 0 20 40 60 80 100 120 140 160
TC , Case Temperature (°C)
TC, Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature
10
Thermal Response (Z thJC )
1
D = 0.50
0.20 0.10
P DM
0.1
0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
t
1
t
2
Notes: 1. Duty fact or D = t
1
/t
2
0.01 0.00001
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
IRGBC30KD2
1400
1200
VGE , Gate-to-Emitter Voltage (V)
A
V GE = 0V, f = 1MHz Cies = Cge + C gc , Cce SHORTED Cres = C gc Coes = C ce + C gc
20
VCE = 400V I C = 14A
16
C, Capacitance (pF)
1000
Cies
800
12
C oes
600
8
400
4
200
Cres
0 1 10
0 0 10 20 30
A
40
100
VCE, Collector-to-Emitter Voltage (V)
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
1.80
Total Switching Losses (mJ)
1.72
Total Switching Losses (mJ)
1.76
VCC VGE TC IC
= 480V = 15V = 25°C = 14A
100
RG = 23Ω VG E = 15V VC C = 480V
10
I C = 24A
1.68
I C = 14A
1
1.64
I C = 7.0A
1.60
1.56 0 10 20 30 40 50
A
60
R G , Gate Resistance (Ω)
0.1 -60
A -40 -20 0 20 40 60 80 100 120 140 160
TC , Case Temperature (°C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Case Temperature
IRGBC30KD2
8.0
6.0
IC , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
R G = 2 3Ω T C = 150°C V CC = 480V V GE = 15V
100
VGE = 20V TJ = 125°C
SAFE OPERATING AREA
4.0
10
2.0
0.0 0 10 20
A 30
1 1 10 100
A
100 0
I C , Collector-to-Emitter Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F (A)
TJ = 150°C
10
TJ = 125°C TJ = 25°C
1 0.4
0.8
1.2
1.6
2.0
2.4
F orward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
IRGBC30KD2
160 100
VR = 200V TJ = 125°C TJ = 25°C
120
VR = 200V TJ = 125°C TJ = 25°C
I F = 24A I F = 12A
80
I IRRM - (A)
I F = 24A
10
t rr - (ns)
I F = 12A IF = 6.0A
I F = 6.0A
40
0 100
di f /dt - (A/µs)
1000
1 100
di f /dt - (A/µs)
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif /dt
600
10000
VR = 200V TJ = 125°C TJ = 25°C
VR = 200V TJ = 125°C TJ = 25°C
di(rec)M/dt - (A/µs)
400
1000
Q RR - (nC)
IF = 6.0A
I F = 24A I F = 12A
I F = 12A
100
200
IF = 6.0A
I F = 24A
0 100
di f /dt - (A/µs)
1000
10 100
di f /dt - (A/µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M /dt vs. dif/dt
IRGBC30KD2
90% Vge +Vge
Same type device as D.U.T.
Vce
Ic 80% of Vce 430µF D.U.T.
10% Vce Ic
90% Ic 5% Ic
td(off)
tf
Eoff =
∫
t1+5µS Vce ic dt t1
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
trr Ic
Qrr =
∫
trr id dt tx
tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk Ic
10% Irr Vcc
Vpk Irr
td(on)
tr
5% Vce t2 Eon = Vce ie dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3
DIODE RECOVERY WAVEFORMS
∫
t4 Erec = Vd id dt t3
∫
t1
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
IRGBC30KD2
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a
L 1000V 50V 6000µF 100V Vc*
D.U.T.
R L= 0 - 480V
480V 4 X IC @25°C
Fig. 19 - Clamped Inductive Load Test Circuit
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405)
Fig. 20 - Pulsed Collector Current Test Circuit
4.69 (.185) 4.20 (.165) -B1.32 (.052) 1.22 (.048)
NOTES: 1 DIMENSIONS & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIONS ARE SHOWN MILLIMETERS (INCHES). 4 CONFORMS TO JEDEC OUTLINE TO-220AB.
3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) 1.15 (.045) MIN
4 15.24 (.600) 14.84 (.584)
1
2
3
3.96 (.160) 3X 3.55 (.140)
14.09 (.555) 13.47 (.530)
LEAD ASSIGNMENTS 1 - GATE 2 - COLLECTOR 3 - EMITTER 4 - COLLECTOR
4.06 (.160) 3.55 (.140) 0.93 (.037) 0.69 (.027)
MBAM
3X
1.40 (.055) 1.15 (.045)
3X
3 X 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104)
0.36 (.014)
2.54 (.100) 2X
CONFORMS TO JEDEC OUTLINE TO-220AB
D imensions in Millimeters and (Inches )