PD - 97347
IRGI4062DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features
• • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses 5 µS short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package
C
VCES = 600V IC = 12A, TC = 100°C
G E
tSC ≥ 5µs, TJ(max) = 150°C
n-channel
C
VCE(on) typ. = 1.34V
Benefits
• High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI
G Gate
E C G
TO-220 Full-Pak
C Collector E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load Current Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Max.
600 22 12 44 44 22 12 44 ±20 ±30 48 19 -55 to +150
Units
V
c d
A
Continuous Gate-to-Emitter Voltage
V W
°C
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
Min.
––– ––– ––– –––
Typ.
––– ––– 0.50 –––
Max.
2.6 4.2 ––– 65
Units
°C/W
1
www.irf.com
10/14/08
IRGI4062DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
Min.
600 — — — — 4.0 — — — — — — —
Typ.
— 0.80 1.34 1.49 1.54 — -14 13 — — 1.70 1.22 —
Max. Units
— — 1.58 — — 6.5 — — 25 250 2.05 — ±100 nA V V V
Conditions
VGE = 0V, IC = 100µA
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
V/°C VGE = 0V, IC = 1mA (-55°C-150°C) IC = 12A, VGE = 15V, TJ = 25°C V IC = 12A, VGE = 15V, TJ = 125°C IC = 12A, VGE = 15V, TJ = 150°C VCE = VGE, IC = 700µA
e
Ref.Fig CT6 CT6 5,6,7 9,10,11
VCE(on) VGE(th)
∆VGE(th)/∆TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
9, 10, 11, 12
gfe ICES VFM IGES
mV/°C VCE = VGE, IC = 1.0mA (-55°C - 150°C) S VCE = 50V, IC = 12A, PW = 80µs µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IF = 12A IF = 12A, TJ = 150°C VGE = ±20V
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min.
— — — — — — — — — — — — — — — — — — — —
Typ.
48 13 18 31 183 214 41 18 100 27 130 275 405 39 16 119 39 1528 126 39
Max. Units
72 20 27 131 283 414 53 25 110 35 — — — — — — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 12A VGE = 15V VCC = 400V
Conditions
Ref.Fig 24 CT1
IC = 12A, VCC = 400V, VGE = 15V RG = 10Ω , L = 0.13mH, TJ = 25°C
Energy losses include tail & diode reverse recovery
CT4
IC = 12A, VCC = 400V, VGE = 15V RG = 10Ω , L = 0.13mH, TJ = 25°C
CT4
IC = 12A, VCC = 400V, VGE=15V RG=10Ω , L= 0.13mH, TJ = 150°C IC = 12A, VCC = 400V, VGE = 15V RG = 10Ω , L = 0.13mH TJ = 150°C
eÃ
13, 15 CT4 WF1, WF2 14, 16 CT4 WF1 WF2 23
Energy losses include tail & diode reverse recovery
f = 1.0Mhz TJ = 150°C, IC = 44A VCC = 480V, Vp =600V Rg = 100Ω, VGE = +15V to 0V
4 CT2
FULL SQUARE 5 — — — — 362 56 30 — — — — µs µJ ns A
VCC = 400V, Vp =600V Rg = 100Ω, VGE = +15V to 0V TJ = 150°C VCC = 400V, IF = 12A VGE = 15V, Rg = 10Ω , L = 0.13mH
22, CT3 WF4 17, 18, 19 20, 21
WF3
Notes: VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGI4062DPbF
25
50
20
40
Ptot (W)
15
IC (A)
30
10
20
5
10
0 0 20 40 60 80 100 120 140 160 T C (°C)
0 0 20 40 60 80 100 120 140 160 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
Fig. 2 - Power Dissipation vs. Case Temperature
100
10µsec 10 100µsec
IC (A)
IC (A)
1msec 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 10 VCE (V) 100 1000 DC
10
1 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V
120 100 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 100 80
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
ICE (A)
60 40 20 0 0 1 2 3 4 5 6 7 8 9 10
60 40 20 0 0 1 2 3 4 5 6 7 8 9 10
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
VCE (V)
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
www.irf.com
3
IRGI4062DPbF
140 120 100 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
120 100 80 -40°c 25°C 150°C
ICE (A)
IF (A)
80 60 40 20 0 0 2 4 6 8 10 12 14
60 40 20 0 0.0
1.0
2.0 VF (V)
3.0
4.0
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
20 18 16 14 ICE = 6.0A ICE = 12A ICE = 24A
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
20 18 16 14
VCE (V)
10 8 6 4 2 0 5 10 VGE (V)
VCE (V)
12
12 10 8 6 4 2 0
ICE = 48A
ICE = 6.0A ICE = 12A ICE = 24A ICE = 48A
15
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
20 18 16 14 ICE = 6.0A ICE = 12A 100 80 120
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
T J = 25°C T J = 150°C
VCE (V)
10 8 6 4 2 0 5 10 VGE (V)
ICE (A)
20
12
ICE = 24A ICE = 48A
60 40 20 0
15
0
5
10 VGE (V)
15
20
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
4
www.irf.com
IRGI4062DPbF
600 500 400
1000
Swiching Time (ns)
Energy (µJ)
EOFF 300 200 EON 100 0 0 5 10 IC (A) 15 20 25
td OFF 100 tdON tF 10 0 5 10 IC (A) tR 15 20 25
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 0.13mH; VCE = 400V, RG = 10Ω; VGE = 15V
600
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 0.13mH; VCE = 400V, RG = 10Ω; VGE = 15V
1000
500
Energy (µJ)
400 EOFF 300
Swiching Time (ns)
tdOFF tdON
100
200 EON 100 0 25 50 75 100 125
tF tR 10 0 25 50 75 100 125 RG ( Ω)
Rg ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 0.13mH; VCE = 400V, ICE = 12A; VGE = 15V
35 30 25
IRR (A)
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 0.13mH; VCE = 400V, ICE = 12A; VGE = 15V
30
R G = 10Ω 25 R G = 22Ω
IRR (A)
20
20 R G = 47Ω 15 RG = 100Ω 10 5 5 10 15 IF (A) 20 25
15
10
5 0 25 50 75 100 125 RG (Ω)
Fig. 17 - Typ. Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typ. Diode IRR vs. RG TJ = 150°C
www.irf.com
5
IRGI4062DPbF
30
3500 3000 2500
QRR (µC)
25
24A 10Ω 47Ω 100Ω 22Ω 12A
IRR (A)
20
2000 1500 1000
15
10
500 0
6.0A
5 0 200 400 600 800 1000 diF /dt (A/µs)
0
200
400
600
800
1000
diF /dt (A/µs)
Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 12A; TJ = 150°C
400 350 300 R G = 10Ω
Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 150°C
280 240 200
16 14
R G = 22Ω
Tsc
Isc
Energy (µJ)
Time (µs)
250 200 150 100 50 0 5 10
12 10 8
Current (A)
R G = 47Ω
160 120 80 40 8 10 12 14 16 18 VGE (V)
RG = 100Ω
6 4
15 IF (A)
20
25
Fig. 21 - Typ. Diode ERR vs. IF TJ = 150°C
10000
Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C
16
VGE, Gate-to-Emitter Voltage (V)
Cies 1000
14 12 10 8 6 4 2 0
V CES = 300V V CES = 480V
Capacitance (pF)
100
Coes
10
Cres
1 0 100 200 300 400 500 VCE (V)
0
5
10 15 20 25 30 35 40 45 50 Q G, Total Gate Charge (nC)
Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE ICE = 12A; L = 1700µH
6
www.irf.com
IRGI4062DPbF
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
τJ τJ τ1
0.1
R1 R1 τ2
R2 R2
R3 R3 τ3
R4 R4 τC τ τ4
Ri (°C/W)
0.167978 0.242228 0.922659 1.268352
0.000080 0.000772 0.059650 1.063
τi (sec)
τ1
τ2
τ3
τ4
0.01
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
D = 0.50
Thermal Response ( Z thJC )
1
0.20 0.10 0.05
0.1
0.02 0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2
R3 R3 τ3
R4 R4 τC τ τ4
Ri (°C/W)
0.231912 0.956436 1.348286 1.663366
0.000145 0.001589 0.05534 1.0859
τi (sec)
τ1
τ2
τ3
τ4
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGI4062DPbF
L
L
0
D UT 1K
VC C
80 V Rg
DU T
4 80V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp / DU T
L
4x
DC
360V
- 5V DU T / D RIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
C force
400µH D1 10K C sense
DUT
Rg
VCC
G force
DUT
0.0075µ
E sense E force
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
8
www.irf.com
IRGI4062DPbF
600 tf 500 400 VCE (V) 300 200 100 0 -0.1
Eoff Loss 90% ICE
12 10 8 6
VCE (V)
450 400 350 300 250 tr
TEST CURRENT 90% test current 10% test current
35 30 25 20 15 10 I CE (A)
5% ICE 5% VCE
4 2 0 -2 -4 0.3
I CE (A)
200 150 100 50 0 -50 -100 -0.1 0 time (µs)
5% VCE
5 0 Eon Loss -5 0.1 0.2
0
0.1 time(µs)
0.2
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
75 0 -75 -150 -225 VF (V) -300 -375 -450 -525 -600 -675 -0.10 0.00
Peak IRR 10% Peak IRR
25 QRR tRR 20 15 10 5 0 I F (A) -5
VCE (V)
500
250
400 VCE 300 ICE 200
200
150 ICE (A)
-10 -15 -20 -25 -30 -35 -40 0.20
100
100
50
0
0
0.10
-100 -5.00
0.00
5.00
-50 10.00
time (µS)
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3
www.irf.com
9
IRGI4062DPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSAD'#BÃ XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã"#"! 6TT@H7G@9ÃPIÃXXÃ!#Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅFÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
DSAD'#B !#F Ã"#ÃÃÃÃÃÃÃÃÃ"!
Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ
96U@Ã8P9@ `@6SÃ Ã2Ã! X@@FÃ!# GDI@ÃF
TO-220 Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/08
10
www.irf.com