PD - 97397A
IRGI4064DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features
• • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses 5 µS short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package
C
VCES = 600V IC = 8.0A, TC = 100°C
G E
tSC ≥ 5µs, TJ(max) = 150°C
n-channel
C
VCE(on) typ. = 1.51V
Benefits
• High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI
G Gate
E C G
TO-220 Full-Pak
C Collector E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current, VGE = 15V Clamped Inductive Load Current, VGE = 20V Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Max.
600 15 8.0 24 32 15 8.0 32 ±20 ±30 38 15 -55 to +150
Units
V
c
A
d
Continuous Gate-to-Emitter Voltage
V W
°C
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
Min.
––– ––– ––– –––
Typ.
––– ––– 0.50 –––
Max.
3.29 6.1 ––– 65
Units
°C/W
1
www.irf.com
10/01/09
IRGI4064DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
Min.
600 — — — — 4.0 — — — — — — —
Typ.
— 0.52 1.51 1.73 1.80 — -12 6.5 — — 2.23 1.64 —
Max. Units
— — 1.80 — — 6.5 — — 20 250 3.1 — ±100 nA V V S µA V
Conditions
VGE = 0V, IC = 100µA
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
e
Ref.Fig CT6 CT6 5,6,7 9,10,11
V/°C VGE = 0V, IC = 100µA (-55°C-150°C) IC = 8.0A, VGE = 15V, TJ = 25°C V IC = 8.0A, VGE = 15V, TJ = 125°C IC = 8.0A, VGE = 15V, TJ = 150°C VCE = VGE, IC = 275µA VCE = 50V, IC = 8.0A, PW = 60µs VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IF = 8.0A IF = 8.0A, TJ = 150°C VGE = ±20V
VCE(on) VGE(th)
∆VGE(th)/∆TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
9, 10, 11, 12
mV/°C VCE = VGE, IC = 1.0mA (-55°C - 150°C)
gfe ICES VFM IGES
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min.
— — — — — — — — — — — — — — — — — — — —
Typ.
21 4.8 8.6 20 125 145 29 12 84 18 51 205 256 28 12 101 27 600 45 16
Max. Units
32 7.2 13 25 137 162 38 17 90 23 — — — — — — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 8.0A VGE = 15V VCC = 400V
Conditions
Ref.Fig 24 CT1
IC = 8.0A, VCC = 400V, VGE = 15V RG = 22Ω, L = 1.0mH, TJ = 25°C
Energy losses include tail & diode reverse recovery
CT4
IC = 8.0A, VCC = 400V, VGE = 15V RG = 22Ω, L = 1.0mH, TJ = 25°C
CT4
IC = 8.0A, VCC = 400V, VGE=15V RG=22Ω, L=1.0mH, TJ = 150°C
eÃ
13, 15 CT4 WF1, WF2 14, 16 CT4 WF1 WF2 23
Energy losses include tail & diode reverse recovery
IC = 8.0A, VCC = 400V, VGE = 15V RG = 22Ω, L = 1.0mH TJ = 150°C
f = 1.0Mhz TJ = 150°C, IC = 32A VCC = 480V, Vp =600V Rg = 90Ω, VGE = +20V to 0V
4 CT2
FULL SQUARE 5 — — — — 147 48 14 — — — — µs µJ ns A
VCC = 400V, Vp =600V Rg = 90Ω, VGE = +15V to 0V TJ = 150°C VCC = 400V, IF = 8.0A VGE = 15V, Rg = 22Ω , L = 1.0mH
22, CT3 WF4 17, 18, 19 20, 21
WF3
Notes: VCC = 80% (VCES), VGE = 20V, L = 28µH, RG = 90Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGI4064DPbF
16 14 12 10 8 6 4 2 0 0 20 40 60 80 100 120 140 160 T C (°C)
0 0 20 40 60 80 100 120 140 160 T C (°C) 10 30 40
Ptot (W)
10µsec 100µsec
IC (A)
20
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
Fig. 2 - Power Dissipation vs. Case Temperature
100
10
IC (A)
IC (A)
1000
1msec 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 10 VCE (V) 100 DC
10
1 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V
70 60 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 60 50 40
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE = 20V
ICE (A)
ICE (A)
40 30 20 10 0 0 1 2 3 4 5 6
30 20 10 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
7
8
9
10
0
1
2
3
4
5
6
7
8
9
10
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
VCE (V)
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
www.irf.com
3
IRGI4064DPbF
60 50 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
IF (A)
70 60 50 40 30 20 10 0 -40°c 25°C 150°C
ICE (A)
30 20 10 0 0 1 2 3 4 5 6 7 8 9 10
0.0
1.0
2.0
3.0
4.0
5.0
VCE (V)
VF (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
18 16 14 12
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
18 16 14 12 ICE = 3.7A ICE = 8.0A ICE = 15A
VCE (V)
VCE (V)
10 8 6 4 2 0 5 10 VGE (V)
ICE = 3.7A ICE = 8.0A ICE = 15A
10 8 6 4 2 0 5 10 VGE (V)
15
20
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
18 16 14 12
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
50
40
VCE (V)
8 6 4 2 0 5 10 VGE (V)
ICE = 15A
ICE (A)
10
ICE = 3.7A ICE = 8.0A
30
T J = -40°C T J = 25°C T J = 150°C
20
10
0
15 20
2
4
6
8
10
12
14
16
VGE (V)
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
4
www.irf.com
IRGI4064DPbF
400 350 300
Swiching Time (ns)
1000
EOFF
tdOFF tF tdON 10 tR
Energy (µJ)
250 200 150 100 50 0 2 4 6 8 10 12 14 16 EON
100
1 2 4 6 8 10 12 14 16 IC (A)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 1.0mH; VCE = 400V, RG = 22Ω; VGE = 15V
300 250 200
Energy (µJ)
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 1.0mH; VCE = 400V, RG = 22Ω; VGE = 15V
1000
EOFF
Swiching Time (ns)
150 100 50 0 0 20 40 60 80 100 EON
tdOFF 100 tdON tF 10 0 20 40 tR 60 80 100
Rg ( Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 1.0mH; VCE = 400V, ICE = 8.0A; VGE = 15V
20 18 16 14 RG = 10Ω
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 1.0mH; VCE = 400V, ICE = 8.0A; VGE = 15V
16
14
R G = 22Ω
IRR (A)
12 10 8 6 4 2 4 6 8 10
R G = 47Ω
IRR (A)
16
12
10
RG = 100Ω
8
6
12 14
0
25
50 RG (Ω)
75
100
IF (A)
Fig. 17 - Typ. Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typ. Diode IRR vs. RG TJ = 150°C
www.irf.com
5
IRGI4064DPbF
16
600
14
500
QRR (µC)
15A 22Ω
10Ω
IRR (A)
12
400 100Ω 300
47Ω 7.8A
10
8
3.8A
6 200 400 600 diF /dt (A/µs) 800 1000
200 0 200 400 600 800 1000 1200 diF /dt (A/µs)
Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 8.0A; TJ = 150°C
250 R G = 10Ω R G = 22Ω
Energy (µJ)
Time (µs)
Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 150°C
18 16 14 12 10 8 20 6 4 0 8 10 12 14 16 18 VGE (V) 100
200
Tsc
Isc
80
150 R G = 47Ω 100 RG = 100Ω
60
Current (A)
40
50
0 2 4 6 8 10 12 14 16 IF (A)
Fig. 21 - Typ. Diode ERR vs. IF TJ = 150°C
1000 Cies
Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C
16 14 12 10 8 6 4 2 0 V CES = 300V V CES = 480V
Capacitance (pF)
100 Coes 10 Cres
1 0 50 100 150 200 250 300 350 400 VCE (V)
VGE, Gate-to-Emitter Voltage (V)
0
2
4
6
8 10 12 14 16 18 20 22
Q G, Total Gate Charge (nC)
Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE ICE = 8.0A; L = 1900µH
6
www.irf.com
IRGI4064DPbF
10
Thermal Response ( Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4
Ri (°C/W)
0.3188 0.5528 1.0389 1.3807
0.000064 0.000607 0.032948 0.9865
τi (sec)
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10 D = 0.50
Thermal Response ( Z thJC )
1
0.20 0.10 0.05 0.02 0.01
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4
Ri (°C/W)
0.4072 1.9745 1.7918 1.9280
0.1
τi (sec)
0.000069 0.001087 0.021611 1.5076
τJ
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGI4064DPbF
L
L
0
D UT 1K
VC C
80 V Rg
DU T
4 80V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp / DU T
L
4x
DC
360V 400V
- 5V DU T / D RIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
Cf orce
100K D1 22K C sense
DUT
Rg
VCC
Gf orce DUT
0.0075µ
E sense
Ef orce
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
8
www.irf.com
IRGI4064DPbF
500 tf 400 300 V CE (V) 200
90% ICE
25 20 15
500 tr 400 300 VCE (V)
I CE (A)
TEST CURRENT
25 20 15 10 5
5% V CE
90% test current 10% test current
10
5% V CE
200 100 0 -100 -0.1
100 0
5
5% ICE
0
Eoff Loss
0 Eon Loss 0.1 time (µs) -5
-100 -0.2
-5 0.6 0.8
0
0.2
0.4
time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
100 0 -100 -200 -300 -400 -500 -600 -0.05
Peak IRR
20 QRR t RR
10% Peak IRR
600 500 VCE 400 Vce (V) ICE
100 80 60 40 20 0 -20 -5 0 5 10 Time (uS)
Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3
15 10 5 0 -5 -10 -15 0.15
300 200 100 0
0.00
0.05 time (µS)
0.10
Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4
www.irf.com
Ice (A)
VF (V)
I F (A)
I CE (A)
9
IRGI4064DPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSAD'#BÃ XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã"#"! 6TT@H7G@9ÃPIÃXXÃ!#Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅFÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
DSAD'#B !#F Ã"#ÃÃÃÃÃÃÃÃÃ"!
Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ
96U@Ã8P9@ `@6SÃ Ã2Ã! X@@FÃ!# GDI@ÃF
TO-220 Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/09
10
www.irf.com