PD-94576A
IRGIB10B60KD1
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • Maximum Junction Temperature Rated at 175°C
G E C
VCES = 600V IC = 10A, TC=100°C tsc > 10µs, TJ=150°C
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
n-channel
VCE(on) typ. = 1.7V
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VISOL VGE PD @ TC = 25°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current
TO-220 Full-Pak
Max.
600 16 10 A 32 32 16 10 32 2500 ±20 44 22 -55 to +175 °C 300 (0.063 in. (1.6mm) from case) 10 lbf.in (1.1N.m) W V
Units
V
c
Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature for 10 sec. Mounting Torque, 6-32 or M3 Screw
PD @ TC = 100°C Maximum Power Dissipation
Thermal / Mechanical Characteristics
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– 2.0
Max.
3.4 5.3 ––– 62 –––
Units
°C/W
g
www.irf.com
1
2/27/04
IRGIB10B60KD1
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
— 0.99 1.70 2.05 2.06 4.5 -10 5.0 1.0 90 150 1.80 1.32 1.23 —
Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.50 VCE(on) Collector-to-Emitter Voltage — — VGE(th) Gate Threshold Voltage 3.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — gfe Forward Transconductance — — ICES Zero Gate Voltage Collector Current — — VFM Diode Forward Voltage Drop — — — IGES Gate-to-Emitter Leakage Current —
— V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 10A, VGE = 15V, TJ = 25°C 2.10 2.35 V IC = 10A, VGE = 15V, TJ = 150°C IC = 10A, VGE = 15V, TJ = 175°C 2.35 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1mA (25°C-150°C) — S VCE = 50V, IC = 10A, PW = 80µs VGE = 0V, VCE = 600V 150 250 µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C 400 2.40 V IF = 5.0A, VGE = 0V IF = 5.0A, VGE = 0V, TJ = 150°C 1.74 IF = 5.0A, VGE = 0V, TJ = 175°C 1.62 ±100 nA VGE = ±20V, VCE = 0V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (PEAK) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge
Min. Typ. Max. Units
— 41 62 — 4.6 6.9 — 19 29 — 156 264 — 165 273 — 321 434 — 25 33 — 24 34 — 180 250 — 62 87 — 261 372 — 313 425 — 574 694 — 22 31 — 24 34 — 240 340 — 48 67 — 7.5 — — 610 915 — 66 99 — 23 35 FULL SQUARE 10 — — — — — — 100 99 79 14 553 — — 128 103 18 719 nC
Conditions
IC = 10A VCC = 400V VGE = 15V IC = 10A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.07mH Ls= 150nH, TJ = 25°C IC = 10A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH Ls= 150nH, TJ = 25°C
µJ
d
ns
µJ
ns
IC = 10A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.07mH Ls= 150nH, TJ = 150°C IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.07mH Ls= 150nH, TJ = 150°C
d
nH pF
Measured 5 mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150°C, IC = 32A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 50Ω TJ = 150°C, Vp = 600V, RG = 50Ω VCC=360V,VGE = +15V to 0V TJ = 150°C VCC = 400V, IF = 10A, L = 1.07mH VGE = 15V, RG = 50Ω di/dt = 500A/µs
µs A µJ ns A nC
Vcc =80% (VCES), VGE = 20V, L =100µH, RG = 50Ω.
Energy losses include "tail" and diode reverse recovery.
2
www.irf.com
IRGIB10B60KD1
20 50 45 16 40 35
Ptot (W)
12
IC (A)
30 25 20 15
8
4
10 5
0 0 20 40 60 80 100 120 140 160 180 T C (°C)
0 0 20 40 60 80 100 120 140 160 180 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
100
10
10 µs 100 µs
IC (A)
1 1ms 0.1 DC
IC A)
1 10 100 VCE (V) 1000 10000
10
0.01
1 10 100 1000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 175°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGIB10B60KD1
20 18 16 14
ICE (A)
20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
18 16 14 12 10 8 6 4 2 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
12 10 8 6 4 2 0 0 2 VCE (V) 4 6
0
2 VCE (V)
4
6
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
20 18 16 14
ICE (A)
40
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
35 30 25
IF (A)
-40°C 25°C 150°C
12 10 8 6
20 15 10
4 2 0 0 2 VCE (V) 4 6
5 0 0.0 0.5 1.0 1.5 VF (V) 2.0 2.5 3.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRGIB10B60KD1
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 5.0A ICE = 10A ICE = 20A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 5.0A ICE = 10A ICE = 20A
12 10 8 6 4 2 0
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
VCE (V)
100 90 80 70 ICE = 10A ICE = 20A
ICE (A)
T J = 25°C T J = 150°C
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 5.0A
60 50 40 30 20 10 0 T J = 150°C T J = 25°C 0 5 10 VGE (V) 15 20
15
20
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRGIB10B60KD1
700 600 500
Energy (µJ)
1000
tdOFF
EOFF
Swiching Time (ns)
100
400 300 200 100 0 0 5 10 IC (A) 15
EON
tF tdON
10
tR
20
1 0 5 10 15 20
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.07mH; VCE= 400V RG= 50Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.07mH; VCE= 400V RG= 50Ω; VGE= 15V
1000
10000
800
EOFF
Swiching Time (ns)
EON
Energy (µJ)
600
1000
tdOFF
400
100
200
tF tR tdON
10
0 0 100 200 300 400 500
0
100
200
300
400
500
RG (Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.07mH; VCE= 400V ICE= 10A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.07mH; VCE= 400V ICE= 10A; VGE= 15V
6
www.irf.com
IRGIB10B60KD1
15 16
RG = 50 Ω RG = 150 Ω RG = 270 Ω
5
14 12 10
10
IRR (A)
IRR (A)
20
8 6
RG = 470 Ω
4 2
0 0 5 10 15
0 0 100 200 300 400 500
IF (A)
RG ( Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 10A
16 14
1000 150Ω 800 270 Ω 470Ω 50Ω 20A 10A
12
8 6 4 2
Q RR (nC)
10
600
IRR (A)
400
5.0A
200
0
0 0 200 400 600
0
100
200
300
400
500
600
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 150°C
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C
www.irf.com
7
IRGIB10B60KD1
200
160
Energy (µJ)
120
470 Ω
80
270 Ω 150 Ω 50 Ω
40 0 5 10 15 20 25
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C
1000
16
Cies
14 300V 12 400V
Capacitance (pF)
10
VGE (V)
100
8 6 4
Coes
Cres
10 1 10 100
2 0 0 10 20 30 40 50 Q G , Total Gate Charge (nC)
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 10A; L = 2500µH
8
www.irf.com
IRGIB10B60KD1
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20 0.10 0.05
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ2 τ3 τ4 τ4
Ri (°C/W)
0.3628 0.2582 1.1008 1.6973
τi (sec)
0.00018 0.000695 0.075305 1.781
0.1
0.02 0.01
τJ
τ1
Ci= τi/Ri Ci i/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50 0.20 0.10 0.05 0.02
0.1
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ2 τ3 τ4 τ4
1
Ri (°C/W)
0.9004 1.3642 1.4540 1.5805
τi (sec)
0.000103 0.000693 0.033978 1.6699
τ1
0.01 SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGIB10B60KD1
L
L DUT
0
VCC
80 V
+ -
DUT
480V
1K
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp / DUT
Driver
DC
L
360V
- 5V DUT / DRIVER
Rg
VCC
DUT
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGIB10B60KD1
600 tf 500 Vce 400 90% Ice 300 Vce (V) 5% Vce 200 5% Ice 100 Ice
100 5 5% Vce 0 Eon Loss -100 0.05 -5 0.15 0.25 Time (uS) 0.35 0
15 12.5 10
600
30
500 tr 400
Vce Ice
25
20 90% Ice 10% Ice
7.5
Ice (A) Ice (A) Vce (V) 300
5 2.5 0 Eoff Loss -2.5 -5 0.4 0.6 0.8 Time (uS) 1 1.2
200
10
0 -100 -200
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
100 QRR 0 tRR -100 5 10
300
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
15
400 200
150
Vce (V)
Vf (V)
200
100
-300 Peak IRR -400 10% Peak IRR
-5
-10
100
50
-500
-15
0 0.00 0 50.00
-600 0.20
0.30
0.40 Time (uS)
0.50
-20 0.60
10.00
20.00
30.00
40.00
Tim e (uS)
Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3
www.irf.com
11
Ice (A)
-200
0 If (A)
Ice (A)
15
IRGIB10B60KD1
Dimensions are shown in millimeters (inches)
10.60 (.417) 10.40 (.409) ø 3.40 (.133) 3.10 (.123) -A3.70 (.145) 3.20 (.126)
TO-220 Full-Pak Package Outline
4.80 (.189) 4.60 (.181) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE
7.10 (.280) 6.70 (.263)
16.00 (.630) 15.80 (.622)
1.15 (.045) MIN. 1 2 3
NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 2 CONTROLLING DIMENSION: INCH.
3.30 (.130) 3.10 (.122) -B13.70 (.540) 13.50 (.530) C D
A 3X 1.40 (.055) 1.05 (.042) 0.90 (.035) 3X 0.70 (.028) 0.25 (.010) 2.54 (.100) 2X M AM B 3X 0.48 (.019) 0.44 (.017)
B
2.85 (.112) 2.65 (.104)
MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189)
TO-220 Full-Pak Part Marking Information
EXAMPLE: THIS IS AN IRFI840G WITH AS SEMBLY LOT CODE 3432 AS S EMBLED ON WW 24 1999 IN THE AS S EMBLY LINE "K" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER
IRFI840G 924K 34 32
DAT E CODE YEAR 9 = 1999 WEEK 24 LINE K
TO-220 Full-Pak package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/04
12
www.irf.com