PD-94427D
IRGIB6B60KD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient.
G E C
VCES = 600V IC = 6.0A, TC=90°C tsc > 10µs, TJ=175°C
n-channel
VCE(on) typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VISOL VGE PD @ TC = 25°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current
TO-220 Full-Pak
Max.
600 11 7.0 A 22 22 9.0 6.0 18 2500 ±20 38 19 -55 to +175 °C 300 (0.063 in. (1.6mm) from case) 10 lbf.in (1.1N.m) W V
Units
V
c
Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature for 10 sec. Mounting Torque, 6-32 or M3 Screw
PD @ TC = 100°C Maximum Power Dissipation
Thermal / Mechanical Characteristics
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– 2.0
Max.
3.9 6.0 ––– 62 –––
Units
°C/W
g
www.irf.com
1
4/14/04
IRGIB6B60KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
— 0.30 1.80 2.20 2.30 4.5 -10 3.0 1.0 200 720 1.25 1.20 1.15 —
Conditions
Ref.Fig.
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — VCE(on) Collector-to-Emitter Voltage 1.50 — — VGE(th) Gate Threshold Voltage 3.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — gfe Forward Transconductance — ICES Zero Gate Voltage Collector Current — — — VFM Diode Forward Voltage Drop — — — IGES Gate-to-Emitter Leakage Current —
— V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) 2.20 V IC = 5A, VGE = 15V, TJ = 25°C IC = 5A, VGE = 15V, TJ = 150°C 2.50 IC = 5A, VGE = 15V, TJ = 175°C 2.60 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1mA (25°C-150°C) — S VCE = 50V, IC = 5.0A, PW = 80µs 150 µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C 500 VGE = 0V, VCE = 600V, TJ = 175°C 1100 1.45 V IF = 5.0A, VGE = 0V IF = 5.0A, VGE = 0V, TJ = 150°C 1.40 IF = 5.0A, VGE = 0V, TJ = 175°C 1.35 ±100 nA VGE = ±20V, VCE = 0V
5,6,7
9,10,11 9,10,11 12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (PEAK) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge
Min. Typ. Max. Units
— 18.2 27.3 — 1.9 2.85 — 9.2 13.8 — 110 210 — 135 245 — 245 455 — 25 34 — 17 26 — 215 230 — 13.2 22 — 150 260 — 190 300 — 340 560 — 28 37 — 17 26 — 240 255 — 18 27 — 7.5 — — 290 435 — 34 51 — 10 15 FULL SQUARE 10 — — — — — — 50 90 70 10 350 — — 175 91 13 455 nC
Conditions
IC = 5.0A VCC = 400V VGE = 15V IC = 5.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 1.4mH Ls= 150nH, TJ = 25°C IC = 5.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 1.4mH Ls= 150nH, TJ = 25°C
Ref.Fig.
23 CT1
CT4
µJ
d
ns
CT4
µJ
ns
IC = 5.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 1.4mH Ls= 150nH, TJ = 150°C IC = 5.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 1.4mH Ls= 150nH, TJ = 150°C
CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2
d
nH pF
Measured 5 mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150°C, IC = 18A, Vp = 600V
VCC=500V,VGE = +15V to 0V,RG = 100Ω
22
4 CT2 CT3 WF4 WF4
µs A µJ ns A nC
TJ = 150°C, Vp = 600V, RG = 100Ω VCC=360V,VGE = +15V to 0V
TJ = 150°C VCC = 400V, IF = 5.0A, L = 1.4mH VGE = 15V, RG = 100Ω, Ls= 150nH di/dt = 400A/µs
17,18,19 20,21 CT4,WF3
Vcc =80% (VCES), VGE = 20V, L =100µH, RG = 50Ω. Energy losses include "tail" and diode reverse recovery.
2
www.irf.com
IRGIB6B60KD
12 10 8 6 4 2 0 0 20 40 60 80 100 120 140 160 180 T C (°C)
Ptot (W) IC (A)
40 35 30 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 180 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
100
10
10 µs
IC (A)
1
100 µs
IC A)
10
1ms 0.1 DC
0.01 1 10 100 VCE (V) 1000 10000
1 10 100 1000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 175°C
Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V
www.irf.com
3
IRGIB6B60KD
20 18 16 14
ICE (A)
20
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
18 16 14
ICE (A)
12 10 8 6 4 2 0 0
12 10 8 6 4 2 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
2 VCE (V)
4
6
0
2 VCE (V)
4
6
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
20 18 16 14
ICE (A)
30
IF (A)
12 10 8 6 4 2 0 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
25 20 15 10 5 0
-40°C 25°C 150°C
2 VCE (V)
4
6
0.0
0.5
1.0 VF (V)
1.5
2.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRGIB6B60KD
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 3.0A ICE = 5.0A ICE = 10A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 3.0A ICE = 5.0A ICE = 10A
12 10 8 6 4 2 0
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
VCE (V)
ICE (A)
40 35 30 T J = 25°C T J = 150°C
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 3.0A ICE = 5.0A ICE = 10A
25 20 15 10 5 0 T J = 150°C T J = 25°C 0 5 10 VGE (V) 15 20
15
20
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRGIB6B60KD
700 600 EON 500
1000
tdOFF
Swiching Time (ns)
Energy (µJ)
100
400 EOFF 300 200 100 0 0 5 10 IC (A) 15 20
tF tdON
10
tR
1 0 5 10 15 20
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V
250
1000
EOFF
200
tdOFF
Swiching Time (ns)
100
Energy (µJ)
150
EON
100
tdON tR
10
tF
50
0 0 50 100 150 200
1 0 50 100 150 200
RG (Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V
6
www.irf.com
IRGIB6B60KD
25
20
RG = 22 Ω
20
18 16
RG = 47 Ω
IRR (A)
14
RG = 100 Ω
10
IRR (A)
20
15
12 10 8
RG = 150 Ω
5
6 4 2
0 0 5 10 15
0 0 50 100 150 200
IF (A)
RG ( Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 5.0A
20 18 16 14
1200 1000 800
Q RR (nC)
22Ω 47Ω 100 Ω 150Ω 10A
IRR (A)
12 10 8 6 4 2 0 0 200 400 600 800 1000
600 400 200 0 0
5.0A 3.0A
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 5.0A; TJ = 150°C
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C
www.irf.com
7
IRGIB6B60KD
300
22 Ω
250
Energy (µJ)
200
47 Ω
150
100
100 Ω 150 Ω
50 0 5 10 15
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C
1000
16
Cies
14 300V 12 400V
Capacitance (pF)
100
10
Coes Cres
10
VGE (V)
8 6 4 2 0
1 1 10 100
0
5
10
15
20
VCE (V)
Q G , Total Gate Charge (nC)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600µH
8
www.irf.com
IRGIB6B60KD
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20 0.10 0.05
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
τJ
0.02 0.01
Ri (°C/W) τi (sec) 1.157 0.000607 1.134 1.608 0.107781 1.9249
τ1
τ2
Ci= τi/Ri Ci τi/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
D = 0.50
Thermal Response ( Z thJC )
1
0.20 0.10 0.05
τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
0.02 0.01
Ri (°C/W) τi (sec) 2.530 0.001 1.354 2.114 0.068689 2.758
τ1
τ2
Ci= τi/Ri Ci τi/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGIB6B60KD
L
L DUT
0
VCC
80 V
+ -
DUT
480V
1K
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp / DUT
Driver
DC
L
360V
- 5V DUT / DRIVER
Rg
VCC
DUT
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGIB6B60KD
450 400 350 300 250 VCE (V) 200 150 100 50 0 -50 -0.20
Eoff Loss 90% ICE
9 8 7 6 5
VCE (V)
500
25
400
20
300
TEST CURRENT
15 ICE (A)
4 3 2 1 0 -1 0.80
ICE (A)
tf
200 tr
90% test current
10
5% V CE 5% ICE
100
5
10% test current 5% V CE
0 Eon Loss 16.10 16.20 time (µs) 16.30
0
0.30 time(µs)
-100 16.00
-5 16.40
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
50 0 -50 -100 -150 VF (V) -200 -250 -300 -350 -400 -450 -0.06
Peak IRR 10% Peak IRR
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
500 50
8 QRR tRR 6 4 2 0
VCE (V)
400 V CE 300 ICE
40
30 I CE (A)
-2 -4 -6 -8 -10 -12 0.04 0.14 0.24 time (µS)
IF (A)
200
20
100
10
0 -5.00
0.00
5.00 time (µS)
10.00
0 15.00
Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF4- Typ. S.C Waveform @ TJ = 150°C using Fig. CT.3
www.irf.com
11
IRGIB6B60KD
Dimensions are shown in millimeters (inches)
10.60 (.417) 10.40 (.409) ø 3.40 (.133) 3.10 (.123) -A3.70 (.145) 3.20 (.126)
TO-220 Full-Pak Package Outline
4.80 (.189) 4.60 (.181) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE
7.10 (.280) 6.70 (.263)
16.00 (.630) 15.80 (.622)
1.15 (.045) MIN. 1 2 3
NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 2 CONTROLLING DIMENSION: INCH.
3.30 (.130) 3.10 (.122) -B13.70 (.540) 13.50 (.530) C D
A 3X 1.40 (.055) 1.05 (.042) 0.90 (.035) 3X 0.70 (.028) 0.25 (.010) 2.54 (.100) 2X M AM B 3X 0.48 (.019) 0.44 (.017)
B
2.85 (.112) 2.65 (.104)
MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189)
TO-220 Full-Pak Part Marking Information
E XAMP L E : T H IS IS AN IR F I840G WIT H AS S E MB L Y L OT CODE 3432 AS S E MB L E D ON WW 24 1999 IN T H E AS S E MB L Y L IN E "K " IN T E R N AT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE P AR T N U MB E R
IR F I8 40G 924 K 34 32
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 9 = 1999 WE E K 24 L INE K
TO-220 Full-Pak package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/04
12
www.irf.com