PD - 95195
IRGIB7B60KDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• • • • • • Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Maximum Junction Temperature rated at 175°C. Lead-Free
G E C
VCES = 600V IC = 8.0A, TC=100°C tsc > 10µs, TJ=150°C
n-ch an nel
VCE(on) typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
TO-220AB FullPak
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VISOL VGE PD @ TC = 25°C Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current Q Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case, t=1 min. Gate-to-Emitter Voltage Maximum Power Dissipation
Max.
600 12 8.0 24 24 9.0 6.0 18 2500 ±20 39 20 -55 to +175
Units
V A
V W
PD @ TC = 100°C Maximum Power Dissipation Operating Junction and TJ TSTG Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw
°C 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Thermal / Mechanical Characteristics
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– 2.0
Max.
3.8 6.0 ––– 62 –––
Units
°C/W
g
www.irf.com
1
04/27/04
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM
IRGIB7B60KDPbF
Min. Typ. Max. Units
— 0.57 1.8 2.2 2.3 4.5 -9.5 3.7 1.0 200 720 1.25 1.20 1.20 —
Conditions
Ref.Fig.
IGES
600 Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage — — Collector-to-Emitter Voltage — — Gate Threshold Voltage 3.5 Threshold Voltage temp. coefficient — Forward Transconductance — — Zero Gate Voltage Collector Current — — Diode Forward Voltage Drop — — — Gate-to-Emitter Leakage Current —
— V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 8.0A, VGE = 15V, TJ = 25°C 2.2 2.5 V IC = 8.0A, VGE = 15V, TJ = 150°C IC = 8.0A, VGE = 15V, TJ = 175°C 2.5 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1mA (25°C-150°C) — S VCE = 50V, IC = 8.0A, PW = 80µs VGE = 0V, VCE = 600V 150 500 µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C 1100 1.45 V IF = 5.0A, VGE = 0V IF = 5.0A, TJ = 150°C, VGE = 0V 1.40 IF = 5.0A, TJ = 175°C, VGE = 0V 1.30 ±100 nA VGE = ±20V, VCE = 0V
5,6,7 9,10,11
9,10,11 12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (Peak) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge
Min. Typ. Max. Units
— 29 44 — 3.7 5.6 — 14 21 — 160 268 — 160 268 — 320 433 — 23 27 — 22 26 — 140 150 — 32 42 — 220 330 — 270 381 — 490 711 — 22 27 — 21 25 — 180 198 — 40 56 — 7.5 — — 440 660 — 38 57 — 16 24 FULL SQUARE 10 — — — — — — 70 100 95 13 620 — — 133 120 17 800 nC
Conditions
IC = 8.0A VCC = 400V VGE = 15V IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C R IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C R IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C Measured 5mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150°C, IC = 54A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 50Ω TJ = 150°C, Vp = 600V, RG = 100Ω VCC=360V,VGE = +15V to 0V TJ = 150°C VCC = 400V, IF = 8.0A, L = 1.07mH VGE = 15V, RG = 50Ω di/dt = 500A/µS
Ref.Fig.
23 CT1
CT4
µJ
ns
CT4
CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2
µJ
ns
nH pF
22
4 CT2 CT3 WF4 WF4 17,18,19 20,21 CT4,WF3
µs A µJ ns A nC
2
Note QtoRare on page 12
www.irf.com
IRGIB7B60KDPbF
"
50
40
$ "
Ptot (W)
" $ & " $ & T C (°C)
IC (A)
&
30
20
10
0 0 20 40 60 80 100 120 140 160 180 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
10
100 µs
IC (A)
1 10ms 0.1 DC
IC A)
1ms
0.01 1 10 100 VCE (V) 1000 10000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGIB7B60KDPbF
40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6
ICE (A)
20 15 10 5 0 0
1
2
3 VCE (V)
4
5
6
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
30 25 20 -40°C 25°C 150°C
ICE (A)
IF (A)
20 15 10 5 0 0
15 10 5 0
1
2
3 VCE (V)
4
5
6
0.0
0.5
1.0 VF (V)
1.5
2.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRGIB7B60KDPbF
20 18 16 14 20 18 16 14 ICE = 4.0A ICE = 8.0A ICE = 16A
VCE (V)
VCE (V)
12 10 8 6 4 2 0 5 10 VGE (V) 15 20
12 10 8 6 4 2 0 5 10
ICE = 4.0A ICE = 16A
ICE = 8.0A
15 VGE (V)
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14 ICE = 4.0A ICE = 8.0A ICE = 16A
100
80 T J = 25°C T J = 150°C
VCE (V)
10 8 6 4 2 0 5 10
ICE (A)
12
60
40 T J = 150°C T J = 25°C 0
20
15 VGE (V)
20
0
5
10 VGE (V)
15
20
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs
www.irf.com
5
IRGIB7B60KDPbF
600 500
1000
300 200 100 0 0
EOFF
Swiching Time (ns)
400
tdOFF
Energy (µJ)
100
tF tdON tR
10
EON
5
10 IC (A)
15
20
0
5
10
15
20
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.1mH; VCE= 400V, RG= 50Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.1mH; VCE= 400V RG= 50Ω; VGE= 15V
700 600 500
10000
EON
Swiching Time (ns)
EOFF
1000
Energy (µJ)
400 300 200 100 0 0 100 200 300 400 500
tdOFF
100
tdON tF tR
10 0 100 200 300 400 500
RG ( Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V
6
www.irf.com
IRGIB7B60KDPbF
16 14 12 10 20 18 16 14
RG = 50 Ω RG = 150 Ω
IRR (A)
8 6 4 2 0 0 5
IRR (A)
20
12 10 8 6 4 2 0
RG = 270 Ω
RG = 470 Ω
10
15
0
100
200
300
400
500
IF (A)
RG (Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 8.0A
16 14 12
1500 50Ω 1000 150Ω 270Ω 470 Ω 8.0A
16A
8 6 4 2 0 0 100 200 300 400 500 600
Q RR (nC)
500
10
IRR (A)
4.0A
0 0 100 200 300 400 500 600 700 diF /dt (A/µs) diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; IF= 8.0A; TJ = 150°C
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C
www.irf.com
7
IRGIB7B60KDPbF
250
200
470Ω
270Ω
Energy (µJ)
150
150 Ω 50 Ω
100
50
0 0 5 10 15 20
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C
1000
Cies Coes
16 14 12 300V
Capacitance (pF)
100
VGE (V)
Cres
10 8 6 4 2
400V
10
1 0 20 40 60 80 100
0 0 5 10 15 20 25 30 VCE (V) Q G , Total Gate Charge (nC)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 8.0A; L = 600µH
8
www.irf.com
IRGIB7B60KDPbF
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20 0.10 0.05 0.01 0.02
τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ2 τ3 τ4 τ4
Ri (°C/W)
0.367 0.425 1.070 1.928
τi (sec)
0.000164 0.000652 0.081521 2.124500
0.1
τ1
0.01
Ci= τi/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-3 1E-2 1E-1 1E+0 1E+1
0.001 1E-6 1E-5 1E-4
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
D = 0.50
Thermal Response ( Z thJC )
1
0.20 0.10 0.05 0.02 0.01
τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
τ1
τ2
Ri (°C/W) 2.530 1.354 2.114
τi (sec) 0.001 0.068689 2.758
Ci= τi/Ri Ci i/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1 10 100
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGIB7B60KDPbF
10
www.irf.com
IRGIB7B60KDPbF
600 500 400 90% Ice 300 Vce (V) 5% Vce 200 5% Ice 100 0 Eoff Loss -100 -200 0 0.2 0.4 0.6 0.8 1 Time (uS) -2 -4 Ice 2
100
12 tf Vce 10 8 6 Ice (A)
Vce (V)
600
24
500
tr
Vce Ice 90% Ice
20
400
16
300
10% Ice
12 Ice (A)
Ice (A)
4
200
8
0
0
5% Vce
4
Eon Loss 0.3 0.5 0.7 Time (uS)
0
-100
-4 0.9
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
100 QR R 0 tR R -100 -200 -300 -400 -500 -600 -0.15
Peak IRR 10% Peak IRR
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
400 80
15 10 5 0 IF (A)
Vce (V)
350
300
60
250
VF (V)
200
40
-5 -10
150
100
20
-15 -20 0.25
50
-0.05
0.05 time (µS)
0.15
0 0.00
10.00
20.00
30.00
40.00
0 50.00
Time (uS)
Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3
www.irf.com
11
IRGIB7B60KDPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
EXAMPLE: T HIS IS AN IRF I840G WIT H AS S EMBLY LOT CODE 3432 AS S EMBLE D ON WW 24 1999 IN T HE AS S EMBLY LINE "K" INT ERNAT IONAL RECT IF IER LOGO AS S EMBLY LOT CODE PART NUMBE R
IRF I840G 924K 34 32
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YEAR 9 = 1999 WEE K 24 LINE K
Notes: Q VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω. R Energy losses include "tail" and diode reverse recovery. TO-220AB FullPak package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/04
12
www.irf.com