0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGIB7B60KDPBF

IRGIB7B60KDPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGIB7B60KDPBF - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - Internationa...

  • 数据手册
  • 价格&库存
IRGIB7B60KDPBF 数据手册
PD - 95195 IRGIB7B60KDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Maximum Junction Temperature rated at 175°C. Lead-Free G E C VCES = 600V IC = 8.0A, TC=100°C tsc > 10µs, TJ=150°C n-ch an nel VCE(on) typ. = 1.8V Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB FullPak Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VISOL VGE PD @ TC = 25°C Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current Q Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case, t=1 min. Gate-to-Emitter Voltage Maximum Power Dissipation Max. 600 12 8.0 24 24 9.0 6.0 18 2500 ±20 39 20 -55 to +175 Units V A V W PD @ TC = 100°C Maximum Power Dissipation Operating Junction and TJ TSTG Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw °C 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS RθJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. ––– ––– ––– ––– ––– Typ. ––– ––– 0.50 ––– 2.0 Max. 3.8 6.0 ––– 62 ––– Units °C/W g www.irf.com 1 04/27/04 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IRGIB7B60KDPbF Min. Typ. Max. Units — 0.57 1.8 2.2 2.3 4.5 -9.5 3.7 1.0 200 720 1.25 1.20 1.20 — Conditions Ref.Fig. IGES 600 Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage — — Collector-to-Emitter Voltage — — Gate Threshold Voltage 3.5 Threshold Voltage temp. coefficient — Forward Transconductance — — Zero Gate Voltage Collector Current — — Diode Forward Voltage Drop — — — Gate-to-Emitter Leakage Current — — V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 8.0A, VGE = 15V, TJ = 25°C 2.2 2.5 V IC = 8.0A, VGE = 15V, TJ = 150°C IC = 8.0A, VGE = 15V, TJ = 175°C 2.5 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1mA (25°C-150°C) — S VCE = 50V, IC = 8.0A, PW = 80µs VGE = 0V, VCE = 600V 150 500 µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C 1100 1.45 V IF = 5.0A, VGE = 0V IF = 5.0A, TJ = 150°C, VGE = 0V 1.40 IF = 5.0A, TJ = 175°C, VGE = 0V 1.30 ±100 nA VGE = ±20V, VCE = 0V 5,6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (Peak) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge Min. Typ. Max. Units — 29 44 — 3.7 5.6 — 14 21 — 160 268 — 160 268 — 320 433 — 23 27 — 22 26 — 140 150 — 32 42 — 220 330 — 270 381 — 490 711 — 22 27 — 21 25 — 180 198 — 40 56 — 7.5 — — 440 660 — 38 57 — 16 24 FULL SQUARE 10 — — — — — — 70 100 95 13 620 — — 133 120 17 800 nC Conditions IC = 8.0A VCC = 400V VGE = 15V IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C R IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C R IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C Measured 5mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150°C, IC = 54A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 50Ω TJ = 150°C, Vp = 600V, RG = 100Ω VCC=360V,VGE = +15V to 0V TJ = 150°C VCC = 400V, IF = 8.0A, L = 1.07mH VGE = 15V, RG = 50Ω di/dt = 500A/µS Ref.Fig. 23 CT1 CT4 µJ ns CT4 CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2 µJ ns nH pF 22 4 CT2 CT3 WF4 WF4 17,18,19 20,21 CT4,WF3 µs A µJ ns A nC 2 Note QtoRare on page 12 www.irf.com IRGIB7B60KDPbF "   50 40 $ " Ptot (W)   " $ &    " $ & T C (°C) IC (A) & 30 20 10  0 0 20 40 60 80 100 120 140 160 180 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100  10 100 µs  IC (A) 1 10ms 0.1 DC IC A)   1ms 0.01 1 10 100 VCE (V) 1000 10000   VCE (V)  Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V www.irf.com 3 IRGIB7B60KDPbF 40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6 ICE (A) 20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 30 25 20 -40°C 25°C 150°C ICE (A) IF (A) 20 15 10 5 0 0 15 10 5 0 1 2 3 VCE (V) 4 5 6 0.0 0.5 1.0 VF (V) 1.5 2.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 4 www.irf.com IRGIB7B60KDPbF 20 18 16 14 20 18 16 14 ICE = 4.0A ICE = 8.0A ICE = 16A VCE (V) VCE (V) 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 12 10 8 6 4 2 0 5 10 ICE = 4.0A ICE = 16A ICE = 8.0A 15 VGE (V) 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 18 16 14 ICE = 4.0A ICE = 8.0A ICE = 16A 100 80 T J = 25°C T J = 150°C VCE (V) 10 8 6 4 2 0 5 10 ICE (A) 12 60 40 T J = 150°C T J = 25°C 0 20 15 VGE (V) 20 0 5 10 VGE (V) 15 20 Fig. 11 - Typical VCE vs. VGE TJ = 150°C Fig. 12 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs www.irf.com 5 IRGIB7B60KDPbF 600 500 1000 300 200 100 0 0 EOFF Swiching Time (ns) 400 tdOFF Energy (µJ) 100 tF tdON tR 10 EON 5 10 IC (A) 15 20 0 5 10 15 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.1mH; VCE= 400V, RG= 50Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.1mH; VCE= 400V RG= 50Ω; VGE= 15V 700 600 500 10000 EON Swiching Time (ns) EOFF 1000 Energy (µJ) 400 300 200 100 0 0 100 200 300 400 500 tdOFF 100 tdON tF tR 10 0 100 200 300 400 500 RG ( Ω) RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V 6 www.irf.com IRGIB7B60KDPbF 16 14 12 10 20 18 16 14 RG = 50 Ω RG = 150 Ω IRR (A) 8 6 4 2 0 0 5 IRR (A) 20 12 10 8 6 4 2 0 RG = 270 Ω RG = 470 Ω 10 15 0 100 200 300 400 500 IF (A) RG (Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 8.0A 16 14 12 1500 50Ω 1000 150Ω 270Ω 470 Ω 8.0A 16A 8 6 4 2 0 0 100 200 300 400 500 600 Q RR (nC) 500 10 IRR (A) 4.0A 0 0 100 200 300 400 500 600 700 diF /dt (A/µs) diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; IF= 8.0A; TJ = 150°C Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C www.irf.com 7 IRGIB7B60KDPbF 250 200 470Ω 270Ω Energy (µJ) 150 150 Ω 50 Ω 100 50 0 0 5 10 15 20 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 1000 Cies Coes 16 14 12 300V Capacitance (pF) 100 VGE (V) Cres 10 8 6 4 2 400V 10 1 0 20 40 60 80 100 0 0 5 10 15 20 25 30 VCE (V) Q G , Total Gate Charge (nC) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 8.0A; L = 600µH 8 www.irf.com IRGIB7B60KDPbF 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.01 0.02 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ2 τ3 τ4 τ4 Ri (°C/W) 0.367 0.425 1.070 1.928 τi (sec) 0.000164 0.000652 0.081521 2.124500 0.1 τ1 0.01 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-3 1E-2 1E-1 1E+0 1E+1 0.001 1E-6 1E-5 1E-4 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 D = 0.50 Thermal Response ( Z thJC ) 1 0.20 0.10 0.05 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.1 τ1 τ2 Ri (°C/W) 2.530 1.354 2.114 τi (sec) 0.001 0.068689 2.758 Ci= τi/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGIB7B60KDPbF 10 www.irf.com IRGIB7B60KDPbF 600 500 400 90% Ice 300 Vce (V) 5% Vce 200 5% Ice 100 0 Eoff Loss -100 -200 0 0.2 0.4 0.6 0.8 1 Time (uS) -2 -4 Ice 2 100 12 tf Vce 10 8 6 Ice (A) Vce (V) 600 24 500 tr Vce Ice 90% Ice 20 400 16 300 10% Ice 12 Ice (A) Ice (A) 4 200 8 0 0 5% Vce 4 Eon Loss 0.3 0.5 0.7 Time (uS) 0 -100 -4 0.9 Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 100 QR R 0 tR R -100 -200 -300 -400 -500 -600 -0.15 Peak IRR 10% Peak IRR Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 400 80 15 10 5 0 IF (A) Vce (V) 350 300 60 250 VF (V) 200 40 -5 -10 150 100 20 -15 -20 0.25 50 -0.05 0.05 time (µS) 0.15 0 0.00 10.00 20.00 30.00 40.00 0 50.00 Time (uS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 www.irf.com 11 IRGIB7B60KDPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information EXAMPLE: T HIS IS AN IRF I840G WIT H AS S EMBLY LOT CODE 3432 AS S EMBLE D ON WW 24 1999 IN T HE AS S EMBLY LINE "K" INT ERNAT IONAL RECT IF IER LOGO AS S EMBLY LOT CODE PART NUMBE R IRF I840G 924K 34 32 Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YEAR 9 = 1999 WEE K 24 LINE K Notes: Q VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω. R Energy losses include "tail" and diode reverse recovery. TO-220AB FullPak package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/04 12 www.irf.com
IRGIB7B60KDPBF 价格&库存

很抱歉,暂时无法提供与“IRGIB7B60KDPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货