PD- 94117
IRGP20B120U-E
INSULATED GATE BIPOLAR TRANSISTOR
Features
• UltraFast Non Punch Through (NPT) Technology • 10 µs Short Circuit capability • Square RBSOA • Positive VCE(on) Temperature Coefficient • Extended lead TO-247 package
UltraFast IGBT
C
VCES = 1200V
G E
VCE(on) typ. = 3.05V
VGE = 15V, IC = 20A, 25°C
Benefits
• Benchmark efficiency above 20KHz • Optimized for Welding, UPS, and Induction Heating applications • Rugged with UltraFast performance • Low EMI • Significantly Less Snubber required • Excellent Current sharing in Parallel operation • Longer leads for easier mounting
n-channel
TO-247AD
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EAS @ TC =25°C Collector-to-Emitter Breakdown Voltage Continuous Collector Current (Fig.1) Continuous Collector Current (Fig.1) Pulsed Collector Current (Fig.3, Fig. CT.5) Clamped Inductive Load Current(Fig.4, Fig. CT.2) Gate-to-Emitter Voltage Avalanche Energy, single pulse IC = 25A, VCC = 50V, RGE = 25ohm L = 200µH (Fig. CT.6) Maximum Power Dissipation (Fig.2) Maximum Power Dissipation (Fig.2) Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw.
Max.
1200 40 20 120 120 ± 20 65
Units
V A
V mJ
PD @ TC = 25°C PD @ TC = 100°C TJ TSTG
300 120 -55 to + 150 300, (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m)
W
°C
Thermal Resistance
Parameter
RθJC RθCS RθJA Wt ZθJC Junction-to-Case - IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Transient Thermal Impedance Junction-to-Case
Min.
––– ––– ––– –––
(Fig.18)
Typ.
––– 0.24 ––– 6 (0.21)
Max.
0.42 ––– 40 –––
Units
°C/W
g (oz)
www.irf.com
1
03/06/01
IRGP20B120U-E
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES / ∆Tj Temperature Coeff. of Breakdown Voltage
Min. 1200
Typ. +1.2 3.05 3.37 4.23 3.89 4.31 5.0 - 1.2 15.7
Collector-to-Emitter Saturation
VCE(on)
Voltage
VGE(th)
∆VGE(th) / ∆Tj
Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance
4.0 13.6
Max. Units V V/°C 3.45 3.80 4.85 V 4.50 5.06 6.0 V
o
Conditions
VGE = 0V,Ic =250 µA VGE = 0V, Ic = 1 mA ( 25 -125 oC ) IC = 20A, VGE = 15V IC = 25A, VGE = 15V IC = 40A, VGE = 15V IC = 20A, VGE = 15V, TJ = 125°C IC = 25A, VGE = 15V, TJ = 125°C VCE = VGE, IC = 250 µA
o
Fig.
5, 6 7, 8 9 10
8,9,10,11
mV/ C VCE = VGE, IC = 1 mA (25 -125 C)
gfe ICES IGES
Zero Gate Voltage Collector Current
Gate-to-Emitter Leakage Current
17.8 250 420 750 1482 2200 ±100
S
VCE = 50V, IC = 20A, PW=80µs VGE = 0V, VCE = 1200V
µA VGE = 0V, VCE = 1200V, TJ =125°C
VGE = 0V, VCE = 1200V, TJ =150°C
nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA
Total Gate charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss * Turn-Off Switching Loss * Total Switching Loss * Turn-on Switching Loss * Turn-off Switching Loss * Total Switching Loss * Turn - on delay time Rise time Turn - off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min.
Typ. 169 24 82 850 425
Max. Units Conditions IC = 20A 254 36 nC VCC = 600V VGE = 15V 126 IC = 20A, VCC = 600V 1050 650 µJ VGE = 15V, Rg = 5Ω, L = 200µH
TJ = 25 C, Energy losses include tail and diode reverse recovery
o
Fig.
17 CT 1
CT 4 WF 1 WF 2 12, 14 CT 4 WF 1 & 2 13, 15 CT 4 WF 1 WF 2
1275 1800 1350 1550 610 875 1960 2425 50 20 204 24 2200 210 85 65 30 230 35 ns µJ
Ic = 20A, VCC = 600V VGE = 15V, Rg = 5Ω, L = 200µH
TJ = 125 C, Energy losses include tail and diode reverse recovery
o
Ic = 20A, VCC = 600V VGE = 15V, Rg = 5Ω, L = 200µH TJ = 125oC VGE = 0V
pF
VCC = 30V f = 1.0 MHz TJ = 150oC, Ic = 120A VCC = 1000V, VP = 1200V Rg = 5Ω, VGE = +15V to 0V TJ = 150oC VCC = 900V, VP = 1200V Rg = 5Ω, VGE = +15V to 0V
16
4 CT 2
Reverse bias safe operating area
FULL SQUARE
CT 3 WF 3
SCSOA Le
Short Circuit Safe Operating Area
10
---13
----
µs
Internal Emitter Inductance
nH Measured 5 mm from the package.
* Used Diode HF40D120ACE
2
www.irf.com
IRGP20B120U-E
F i g .1 - M a x im u m D C C o lle c to r C u rre n t v s . C a s e T e m p e ra tu re
50 45 40
F i g .2 - P o w e r D is s ip a tio n v s . C a s e T e m p e ra tu re
320 280 240
35 (W) P 120 80 40 0 0 40 80 120 160 0 40 T
C to t
(A )
30 25 20 15 10 5 0
200 160
I
C
80 (°C )
120
160
T
C
(° C )
F i g .3 - F o rw a rd S O A T C =2 5 °C ; T j < 1 5 0 °C 1000 PULSED
2µ s
F i g .4 - R e v e rs e B i a s S O A T j = 1 5 0 °C , V GE = 1 5 V 1000
100
10 µ s
100
100 µ s
(A )
10
1m s
C
I
I 10 1 1
1
10m s
DC
0 .1 1 10 V
CE
100 (V )
1000
10000
C
(A )
10 V
CE
100 (V )
1000
10000
www.irf.com
3
IRGP20B120U-E
F i g .5 - T y p i c a l IG B T O u tp u t C h a ra c te ri s ti c s T j= -4 0 ° C ; tp = 3 0 0 µs 60 55 50 45 40 (A ) 35 30 25 20 15 10 5 0 0 1 2 V 3
CE
F i g .6 - T y p ic a l IG B T O u tp u t C h a ra c te ris tic s T j= 2 5 ° C ; tp = 3 0 0 µs
60 55 50 45 40
V V V V V
GE GE GE GE GE
V V V V V
GE GE GE GE GE
= 1 8V = 1 5V = 1 2V = 1 0V = 8V
= 1 8V = 1 5V = 1 2V = 1 0V = 8V
(A )
C
35 30 25 20 15 10 5 0
I
C
4 (V )
5
6
I
0
1
2 V
3
CE
4 (V )
5
6
F i g .7 - T y p ic a l IG B T O u tp u t C h a ra c te ris tic s T j= 1 2 5 ° C ; tp = 3 0 0 µs
60 55 50 45 40
V V V V V
GE GE GE GE GE
= 1 8V = 1 5V = 1 2V = 1 0V = 8V
(A)
C
35 30 25 20 15 10 5 0 0 1 2 3 4 5 6
I
V
CE
(V )
4
www.irf.com
IRGP20B120U-E
F i g .9 - T y p ic a l V C E v s V 8 T j= -4 0 ° C 20 18 16 14 (V )
(V)
GE
F i g .1 0 - T y p ic a l V C E v s V 9 T j= 2 5 ° C
20 18 16 14 12 10 8 6 4 2 0
GE
12 10 8 6 4 2 0 6 8 10 12 14 V G E (V ) 16 18 20 I CE =1 0 A I CE =2 0 A I CE =4 0 A
I CE =1 0 A I CE =2 0 A I CE =4 0 A
CE
V
V
CE
6
8
10
12 14 V GE (V )
16
18
20
F i g .1 1 - T y p ic a l V C E v s V 10 T j= 1 2 5 ° C 20 18 16 14 (V )
GE
Fi g.12 - T y p. Trans fer C harac teris tic s 11 V C E = 20V ; tp= 20µ s
250 225 200 175 (A ) 150 125 100 75 50 25 0 6 8 10 12 14 V G E (V ) 16 18 20 0 4 8 V
GE
T j= 2 5 ° C T j= 1 2 5 ° C
12 10 8 6 4 2 0 I CE =1 0 A I CE =2 0 A I CE =4 0 A
CE
V
I
C
T j= 1 2 5 ° C T j= 2 5 ° C 12 (V ) 16 20
www.irf.com
5
IRGP20B120U-E
F i g .1 3 - T y p ic a l E n e r g y L o s s v s Ic 12 T j= 1 2 5 ° C ; L = 2 0 0 µH ; V C E = 6 0 0 V ; R g=22 Ω ; V GE =15V
6000
E on tdoff
F i g .1 4 - T y p ic a l S w itc h in g T im e v s Ic 13 T j= 1 2 5 ° C ; L = 2 0 0 µH ; V C E = 6 0 0 V ; R g=22 Ω ; V GE =15V
1000
5000
E nergy (µJ
4000
3000
E off
t (nS )
100
tr tdon tf
2000
1000
0 0 10 20 30 40 50
10 0 10 20 30 40 50
I C (A )
I C (A )
F i g .1 6 - T y p i c a l S w i tc h i n g T i m e v s R g 15 T j= 1 2 5 ° C ; L = 2 0 0 µ H ; V C E = 6 0 0 V ; I C E = 2 0 A ; V GE = 1 5 V
F i g .1 5 - T y p ic a l E n e r g y L o s s v s R g 14 T j= 1 2 5 ° C ; L = 2 0 0 µH ; V C E = 6 0 0 V ; I CE =2 0 A ; V GE =1 5 V
3000 2800 2600 2400 2200 Energy (uJ 2000 1600 1400 1200 1000 800 600 400 200 0
0 5 10 15 20 25 30 35 40 45 50 55
1000
E on tdoff
t (nS)
1800
E off
100
tdon tr tf
10
0 5 10 15 20 25 30 35 40 45 50 55
R g (o h m s )
R g (o h m s )
6
www.irf.com
IRGP20B120U-E
F i g .2 2 - T y p i c a l C a p a c i ta n c e v s V 16 V G E = 0 V ; f= 1 M H z
10000
CE
F i g .2 3 - T y p . G a te C h a r g e v s . V 17 I C = 2 0 A ; L = 6 0 0 µH
16 14
GE
600V 800V
C
C a p a cIta n ce (p
ie s
12
1000
(V) V
10 8 6
C
100
oes
GE
4
C
re s
2 0
10 0 20 40 60
CE
80
100
0
40
80
120
160
200
V
(V )
Q
G
, T o ta l G a te C h a r g e (n C )
F i g .2 4 - N o rm a liz e d T ra n s ie n t T h e rm a l Im p e d a n c e , J u n c tio n -to -C a s e 18 10
θ
1
D = 0.5 0 .2 0 .1
0 .1
0 .0 5
P
0 .0 2 0 .0 1
DM
t1 0 .0 1 t2 N o te s : 1 . D u t y f a c to r D = t 1 / t 2 2 . P e a k T J = P D M x Z thJC + T
S IN G L E P U LS E
C
0 .0 0 1 0 .0 0 0 0 1 0 .0 0 0 1 0 0 .0 0 1 0 0 0 .0 1 0 0 0 0 .1 0 0 0 0 1 .0 0 0 0 0 1 0 .0 0 0 0 0 t 1 , R e c ta n g u la r P u ls e D u ra tio n (s e c )
www.irf.com
7
IRGP20B120U-E
Fig. CT.1 - Gate Charge Circuit (turn-off) Fig. CT.2 - RBSOA Circuit
L
L VCC
0
DUT 1K
80 V
+ -
DUT
1000V
Rg
Fig. CT.3 - S.C. SOA Circuit
Fig. CT.4 - Switching Loss Circuit
Driver
DC
DIODE CLAMP
L
900V
DUT / DRIVER
Rg
DUT
VCC
Fig. CT.5 - Resistive Load Circuit
R = VCC
ICM
Fig. CT.6 - Unclamped Inductive Load Circuit
L
DUT
Rg
VCC
DUT
Rg
VCC
8
www.irf.com
IRGP20B120U-E
Fig. WF.1 - Typ. Turn-off Loss Waveform @ Tj=125°C using Fig. CT.4
1000 25
Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125°C using Fig. CT.4
800 80
9 0 % IC E
800
20 600
9 0 % te s t c u r r e n t
60
600
t
f
15 400 (V
tr
40
T E S T C UR R E NT
(V
400
10
E
E
E
VC
VC
IC
5% VCE
200
1 0 % te s t c u r r e n t
20
5 % VCE
200
5 % IC E
5
0 0
E of f L o s s
0
Eon Loss
0
-2 0 0 -0 .2 0 .0 0 .2 0 .4 0 .6 0 .8 t i m e (µ s )
-5
-2 0 0 -0 .2 -0 .1 0 .0 0 .1 0 .2 0 .3 t i m e (µ s )
-2 0
Fig. WF.3- Typ. S.C. Waveform @ TC=150°C using Fig. CT.3
1200 250
1000
200
800
150
(V
600
100
E
VC
400
50
200
0
0 -1 0 0 10 t i m e (µ s ) 20 30
-5 0
www.irf.com
IC
E
(A
IC
E
(A
(A
9
IRGP20B120U-E
TO-247AD Case Outline and Dimensions
DRG. No:
Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/01
10
www.irf.com