PD - 94388A
IRGP30B60KD-E
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features
• • • • • • • Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. 10µs Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse Recovery Characteristics. Positive VCE (on) Temperature Coefficient. TO-247AD Package
C
VCES = 600V IC = 30A, TC=100°C
G E
tsc > 10µs, TJ=150°C
n-channel
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
VCE(on) typ. = 1.95V
TO-247AD
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ T C = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ T C = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw
Max.
600 60 30 120 120 60 30 120 ±20 304 122 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m)
Units
V
A
V W
°C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.24 ––– 6.0
Max.
0.41 1.32 ––– 40 –––
Units
°C/W
g
www.irf.com
1
10/14/02
IRGP30B60KD-E
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VCE(on) V(BR)CES VGE(th)
∆VGE(th)/∆TJ
gfe ICES VFM IGES
Min. 600 ––– ––– ––– Gate Threshold Voltage 3.5 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance ––– Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current –––
Typ. ––– 0.4 1.95 2.40 4.5 -10 18 5.0 1000 1.30 1.25 –––
Ref.Fig. Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 5, 6,7 2.35 V IC = 30A, VGE = 15V 2.75 IC = 30A,VGE = 15V, TJ = 150°C 9,10,11 9,10,11 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) 12 ––– S VCE = 50V, I C = 50A, PW=80µs 250 µA VGE = 0V, VCE = 600V 2000 VGE = 0V, VCE = 600V, TJ = 150°C 1.55 V IF = 30A 8 TJ = 150°C 1.50 IF = 30A ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Ref.Fig. Max. Units Conditions 23 153 IC = 30A 21 nC VCC = 400V CT.1 66 VGE = 15V 620 µJ IC = 30A, VCC = 400V CT.4 955 VGE =15V, RG = 10Ω, L=200µH, 1575 LS = 150nH TJ = 25°C 60 IC = 30A, VCC = 400V 39 VGE = 15V, RG = 10Ω L =200µH CT.4 200 ns LS = 150nH, TJ = 25°C 40 CT.4 1085 IC = 30A, VCC = 400V 13,15 1350 µJ VGE = 15V,RG = 10Ω, L =200µH 2435 LS = 150nH TJ = 150°C WF1,WF2 CT.4 60 IC = 30A, VCC = 400V 39 VGE = 15V, RG = 10Ω L =200µH 14, 16 235 ns LS = 150nH, TJ = 150°C WF1,WF2 42 ––– VGE = 0V 22 ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 120A, Vp =600V Reverse Bias Safe Operting Area FULL SQUARE VCC = 500V, VGE = +15V to 0V, R G=10 Ω CT.2 CT.3 TJ = 150°C, Vp =600V, RG = 10Ω µs Short Circuit Safe Operting Area 10 ––– ––– WF.4 VCC = 360V, VGE = +15V to 0V 17,18,19 Reverse Recovery energy of the diode ––– 925 1165 µJ TJ = 150°C 20,21 Diode Reverse Recovery time ––– 125 ––– ns VCC = 400V, IF = 30A, L = 200µH CT.4,WF.3 Diode Peak Reverse Recovery Current ––– 43 48 A VGE = 15V,RG = 10Ω, LS = 150nH
Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Typ. 102 14 44 350 825 1175 46 28 185 31 635 1150 1785 46 28 205 32 1750 160 60
Notes: VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω.
Energy losses include "tail" and diode reverse recovery.
2
www.irf.com
IRGP30B60KD-E
80
350 300
60
250
Ptot (W)
IC (A)
200 150 100 50
40
20
0 0 20 40 60 80 100 120 140 160 T C (°C)
0 0 20 40 60 80 100 120 140 160 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
1000
1000
100 10 µs
IC (A)
100
10 100 µs
IC A)
10
1
1ms DC
0.1 1 10 100 VCE (V) 1000 10000
1 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGP30B60KD-E
60 50 40
ICE (A)
60
VGE = 18V VGE = 15V VGE = 12V VGE = 10V
ICE (A)
50 40 30 20 10 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
VGE = 8.0V 30 20 10 0 0 1 2 3 VCE (V) 4 5
0
1
2
3 VCE (V)
4
5
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
60 50 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V
IF (A)
60 50 40 30 20 10 0 -40°C 25°C 150°C
ICE (A)
VGE = 8.0V 30 20 10 0 0 1 2 3 VCE (V) 4 5
0.0
0.5
1.0 VF (V)
1.5
2.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRGP30B60KD-E
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 15A ICE = 30A ICE = 60A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 15A ICE = 30A ICE = 60A
12 10 8 6 4 2 0
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
VCE (V) ICE (A)
250 T J = 25°C 200 T J = 150°C
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 15A ICE = 30A ICE = 60A
150
100
50
T J = 150°C T J = 25°C
0 15 20 0 5 10 VGE (V) 15 20
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRGP30B60KD-E
3000 2500 2000
Energy (µJ)
1000
EOFF 1500 EON 1000 500
Swiching Time (ns)
tdOFF
100
td ON tF tR
0 0 20 40 IC (A) 60 80
10 0 20 40 60 80
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 200µH; VCE = 400V RG = 10Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 200µH; VCE = 400V RG = 10Ω; VGE = 15V
3000
10000
2500
Swiching Time (ns)
2000
1000
Energy (µJ)
EOFF
1500
tdOFF
EON
1000
100
tdON tR
tF
500
0 0 25 50 75 100 125
10 0 25 50 75 100 125
RG ( Ω)
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 200µH; VCE = 400V ICE = 30A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 200µH; VCE = 400V ICE = 30A; VGE = 15V
6
www.irf.com
IRGP30B60KD-E
50 45 40 35
50
RG = 4.7Ω
45 40
RG = 10Ω
35
IRR (A)
25 20 15 10 5 0 0 20 40
RG = 47Ω RG = 100Ω
IRR (A)
80
30
RG = 22Ω
30 25 20 15 10 5 0
60
0
25
50
75
100
125
IF (A)
RG (Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 30A
50 45 40 35
5000 10Ω 4.7Ω60A
4000 47Ω
Q RR (nC)
22Ω
IRR (A)
30 25 20 15 10 5 0 0 500 1000 1500
3000
100 Ω
30A
2000
15A
1000
0 0 500 1000 1500 diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; IF= 30A; TJ = 150°C
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C
www.irf.com
7
IRGP30B60KD-E
1400 1200 1000
4.7Ω 10Ω 22Ω 47Ω 100 Ω
Energy (µJ)
800 600 400 200 0 0 20 40
60
80
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C
10000
16 14
Cies
Capacitance (pF)
1000
200V 12 400V 10
VGE (V)
8 6 4
Coes
100
Cres
10 0 20 40 60 80 100
2 0 0 25 50 75 100 125 Q G, Total Gate Charge (nC)
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 30A; L = 600µH
8
www.irf.com
IRGP30B60KD-E
10
Thermal Response ( Z thJC )
1
0.1
D = 0.50 0.20 0.10 0.05 0.02 0.01
τJ τJ τ1 τ1
R1 R1 τ2
R2 R2 τC τ2 τ
Ri (°C/W) τi (sec) 0.200 0.000428 0.209 0.013031
0.01
Ci= τi/Ri Ci i/Ri
0.001
SINGLE PULSE ( THERMAL RESPONSE )
0.0001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
0.10 0.05 0.02 0.01
τJ
Ri (°C/W) τi (sec) 0.205 0.000136 0.505 0.567 0.001645 0.037985
τ1
τ2
0.01
Ci= τi /Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGP30B60KD-E
L
L DUT
0
VCC
80 V Rg
DUT
480V
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp / DUT
L
4x
DC
- 5V
360V
Rg
DUT
DUT / DRIVER
VCC
Fig.C.T.3 - S.C.SOA Circuit
VCC ICM
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGP30B60KD-E
700 600
90% ICE
35 30 tf 25 20
700 600 500
TEST CURRENT
70 60 50 40 30
90% test current
500 400 V CE (V) 300 200 100 0
400 VCE (V)
ICE (A)
15
5% V CE 5% ICE
300 200 100 0
Eon Loss
10 5 0
tr
10% test current 5% V CE
20 10 0
Eof f Loss
-100 -0.20
0.00
0.20
0.40
0.60
-5 0.80
-100 15.90
16.00
16.10 Time (µs)
16.20
-10 16.30
Time(µs)
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
100 0 -100 -200 V F (V) -300 -400 -500 -600 -700 -0.25
Peak IRR
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
600 300
40 30
QRR tRR
500
250
20 10 0 -10
200 100 400 VCE (V) ICE VCE 150 200 ICE (A)
IF (A)
300
10% Peak IRR
-20
100 50
-30 -40 0.35
0 -5.00 0 15.00
-0.05
0.15
0.00
5.00 time (µS)
10.00
time (µS)
Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3
www.irf.com
11
ICE (A)
IRGP30B60KD-E
TO-247AD Case Outline and Dimensions
TO-247AD package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/02
12
www.irf.com