0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGP30B60KD-E

IRGP30B60KD-E

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGP30B60KD-E - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International...

  • 数据手册
  • 价格&库存
IRGP30B60KD-E 数据手册
PD - 94388A IRGP30B60KD-E INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • Low VCE (on) Non Punch Through IGBT Technology. Low Diode VF. 10µs Short Circuit Capability. Square RBSOA. Ultrasoft Diode Reverse Recovery Characteristics. Positive VCE (on) Temperature Coefficient. TO-247AD Package C VCES = 600V IC = 30A, TC=100°C G E tsc > 10µs, TJ=150°C n-channel Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. VCE(on) typ. = 1.95V TO-247AD Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ T C = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ T C = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current  Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw Max. 600 60 30 120 120 60 30 120 ±20 304 122 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Units V A V W °C Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. ––– ––– ––– ––– ––– Typ. ––– ––– 0.24 ––– 6.0 Max. 0.41 1.32 ––– 40 ––– Units °C/W g www.irf.com 1 10/14/02 IRGP30B60KD-E Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VCE(on) V(BR)CES VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Min. 600 ––– ––– ––– Gate Threshold Voltage 3.5 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance ––– Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.4 1.95 2.40 4.5 -10 18 5.0 1000 1.30 1.25 ––– Ref.Fig. Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 5, 6,7 2.35 V IC = 30A, VGE = 15V 2.75 IC = 30A,VGE = 15V, TJ = 150°C 9,10,11 9,10,11 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) 12 ––– S VCE = 50V, I C = 50A, PW=80µs 250 µA VGE = 0V, VCE = 600V 2000 VGE = 0V, VCE = 600V, TJ = 150°C 1.55 V IF = 30A 8 TJ = 150°C 1.50 IF = 30A ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Ref.Fig. Max. Units Conditions 23 153 IC = 30A 21 nC VCC = 400V CT.1 66 VGE = 15V 620 µJ IC = 30A, VCC = 400V CT.4 955 VGE =15V, RG = 10Ω, L=200µH, 1575 LS = 150nH TJ = 25°C ‚ 60 IC = 30A, VCC = 400V 39 VGE = 15V, RG = 10Ω L =200µH CT.4 200 ns LS = 150nH, TJ = 25°C 40 CT.4 1085 IC = 30A, VCC = 400V 13,15 1350 µJ VGE = 15V,RG = 10Ω, L =200µH 2435 LS = 150nH TJ = 150°C ‚ WF1,WF2 CT.4 60 IC = 30A, VCC = 400V 39 VGE = 15V, RG = 10Ω L =200µH 14, 16 235 ns LS = 150nH, TJ = 150°C WF1,WF2 42 ––– VGE = 0V 22 ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 120A, Vp =600V Reverse Bias Safe Operting Area FULL SQUARE VCC = 500V, VGE = +15V to 0V, R G=10 Ω CT.2 CT.3 TJ = 150°C, Vp =600V, RG = 10Ω µs Short Circuit Safe Operting Area 10 ––– ––– WF.4 VCC = 360V, VGE = +15V to 0V 17,18,19 Reverse Recovery energy of the diode ––– 925 1165 µJ TJ = 150°C 20,21 Diode Reverse Recovery time ––– 125 ––– ns VCC = 400V, IF = 30A, L = 200µH CT.4,WF.3 Diode Peak Reverse Recovery Current ––– 43 48 A VGE = 15V,RG = 10Ω, LS = 150nH Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 102 14 44 350 825 1175 46 28 185 31 635 1150 1785 46 28 205 32 1750 160 60 Notes:  VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω. ‚ Energy losses include "tail" and diode reverse recovery. 2 www.irf.com IRGP30B60KD-E 80 350 300 60 250 Ptot (W) IC (A) 200 150 100 50 40 20 0 0 20 40 60 80 100 120 140 160 T C (°C) 0 0 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 10 µs IC (A) 100 10 100 µs IC A) 10 1 1ms DC 0.1 1 10 100 VCE (V) 1000 10000 1 10 100 VCE (V) 1000 Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V www.irf.com 3 IRGP30B60KD-E 60 50 40 ICE (A) 60 VGE = 18V VGE = 15V VGE = 12V VGE = 10V ICE (A) 50 40 30 20 10 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 8.0V 30 20 10 0 0 1 2 3 VCE (V) 4 5 0 1 2 3 VCE (V) 4 5 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 60 50 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V IF (A) 60 50 40 30 20 10 0 -40°C 25°C 150°C ICE (A) VGE = 8.0V 30 20 10 0 0 1 2 3 VCE (V) 4 5 0.0 0.5 1.0 VF (V) 1.5 2.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 4 www.irf.com IRGP30B60KD-E 20 18 16 14 VCE (V) VCE (V) 20 18 16 14 ICE = 15A ICE = 30A ICE = 60A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 15A ICE = 30A ICE = 60A 12 10 8 6 4 2 0 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 18 16 14 VCE (V) ICE (A) 250 T J = 25°C 200 T J = 150°C 12 10 8 6 4 2 0 5 10 VGE (V) ICE = 15A ICE = 30A ICE = 60A 150 100 50 T J = 150°C T J = 25°C 0 15 20 0 5 10 VGE (V) 15 20 Fig. 11 - Typical VCE vs. VGE TJ = 150°C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com 5 IRGP30B60KD-E 3000 2500 2000 Energy (µJ) 1000 EOFF 1500 EON 1000 500 Swiching Time (ns) tdOFF 100 td ON tF tR 0 0 20 40 IC (A) 60 80 10 0 20 40 60 80 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 200µH; VCE = 400V RG = 10Ω; VGE = 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 200µH; VCE = 400V RG = 10Ω; VGE = 15V 3000 10000 2500 Swiching Time (ns) 2000 1000 Energy (µJ) EOFF 1500 tdOFF EON 1000 100 tdON tR tF 500 0 0 25 50 75 100 125 10 0 25 50 75 100 125 RG ( Ω) RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 200µH; VCE = 400V ICE = 30A; VGE = 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 200µH; VCE = 400V ICE = 30A; VGE = 15V 6 www.irf.com IRGP30B60KD-E 50 45 40 35 50 RG = 4.7Ω 45 40 RG = 10Ω 35 IRR (A) 25 20 15 10 5 0 0 20 40 RG = 47Ω RG = 100Ω IRR (A) 80 30 RG = 22Ω 30 25 20 15 10 5 0 60 0 25 50 75 100 125 IF (A) RG (Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 30A 50 45 40 35 5000 10Ω 4.7Ω60A 4000 47Ω Q RR (nC) 22Ω IRR (A) 30 25 20 15 10 5 0 0 500 1000 1500 3000 100 Ω 30A 2000 15A 1000 0 0 500 1000 1500 diF /dt (A/µs) diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; IF= 30A; TJ = 150°C Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C www.irf.com 7 IRGP30B60KD-E 1400 1200 1000 4.7Ω 10Ω 22Ω 47Ω 100 Ω Energy (µJ) 800 600 400 200 0 0 20 40 60 80 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 10000 16 14 Cies Capacitance (pF) 1000 200V 12 400V 10 VGE (V) 8 6 4 Coes 100 Cres 10 0 20 40 60 80 100 2 0 0 25 50 75 100 125 Q G, Total Gate Charge (nC) VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 30A; L = 600µH 8 www.irf.com IRGP30B60KD-E 10 Thermal Response ( Z thJC ) 1 0.1 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 τC τ2 τ Ri (°C/W) τi (sec) 0.200 0.000428 0.209 0.013031 0.01 Ci= τi/Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.1 0.10 0.05 0.02 0.01 τJ Ri (°C/W) τi (sec) 0.205 0.000136 0.505 0.567 0.001645 0.037985 τ1 τ2 0.01 Ci= τi /Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGP30B60KD-E L L DUT 0 VCC 80 V Rg DUT 480V 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4x DC - 5V 360V Rg DUT DUT / DRIVER VCC Fig.C.T.3 - S.C.SOA Circuit VCC ICM Fig.C.T.4 - Switching Loss Circuit R= DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGP30B60KD-E 700 600 90% ICE 35 30 tf 25 20 700 600 500 TEST CURRENT 70 60 50 40 30 90% test current 500 400 V CE (V) 300 200 100 0 400 VCE (V) ICE (A) 15 5% V CE 5% ICE 300 200 100 0 Eon Loss 10 5 0 tr 10% test current 5% V CE 20 10 0 Eof f Loss -100 -0.20 0.00 0.20 0.40 0.60 -5 0.80 -100 15.90 16.00 16.10 Time (µs) 16.20 -10 16.30 Time(µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 100 0 -100 -200 V F (V) -300 -400 -500 -600 -700 -0.25 Peak IRR Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 600 300 40 30 QRR tRR 500 250 20 10 0 -10 200 100 400 VCE (V) ICE VCE 150 200 ICE (A) IF (A) 300 10% Peak IRR -20 100 50 -30 -40 0.35 0 -5.00 0 15.00 -0.05 0.15 0.00 5.00 time (µS) 10.00 time (µS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 www.irf.com 11 ICE (A) IRGP30B60KD-E TO-247AD Case Outline and Dimensions TO-247AD package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/02 12 www.irf.com
IRGP30B60KD-E 价格&库存

很抱歉,暂时无法提供与“IRGP30B60KD-E”相匹配的价格&库存,您可以联系我们找货

免费人工找货