PD - 97222
PDP TRENCH IGBT
Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package
IRGP4055DPbF
Key Parameters
300 1.70 270 150 V V A °C
VCE min VCE(ON) typ. @ 110A IRP max @ TC= 25°C c TJ max
C
C
G E
C G
E
n-channel
G Gate C Collector
TO-247AC
E Emitter
Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications.
Absolute Maximum Ratings
Parameter
VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current c Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw 300 10lbxin (1.1Nxm) Typ. ––– 1.45 0.20 ––– 2.0 (0.07) Max. 0.48 2.5 ––– 70 ––– N Units °C/W
Max.
±30 110 60 270 255 102 2.04 -40 to + 150
Units
V A
W W/°C °C
Thermal Resistance
RθJC (IGBT) RθJC (Diode) RθCS RθJA Parameter Thermal Resistance Junction-to-Case-(each IGBT) d Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Weight
g (oz)
www.irf.com
1
06/14/06
IRGP4055DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
BVCES ∆ΒVCES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ ICES IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst EPULSE Parameter Collector-to-Emitter Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Collector-to-Emitter Voltage Min. 300 ––– ––– ––– ––– ––– 2.6 ––– ––– ––– ––– ––– ––– ––– ––– — — — — — — — — 100 ––– ––– Ciss Coss Crss LC LE Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance Internal Emitter Inductance ––– ––– ––– ––– ––– Typ. ––– 0.23 1.10 1.70 2.35 1.95 ––– -11 2.0 100 ––– ––– 38 132 42 44 39 245 152 42 40 362 309 ––– 705 915 4280 200 125 5.0 13 Max. ––– ––– 1.30 2.10 ––– ––– 5.0 ––– 25 ––– 100 -100 ––– ––– ––– 57 55 308 198 — — — — ––– ––– ––– ––– ––– ––– ––– ––– Conditions Units VGE = 0V, ICE = 1 mA V V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 35A VGE = 15V, ICE = 110A V VGE = 15V, ICE = 200A VGE = 15V, ICE = 110A, TJ = 150°C VCE = VGE, ICE = 1mA V
e e e
Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time Shoot Through Blocking Time Energy per Pulse
mV/°C µA VCE = 300V, VGE = 0V VCE = 300V, VGE = 0V, TJ = 150°C nA VGE = 30V VGE = -30V VCE = 25V, ICE = 35A S nC VCE = 200V, IC = 35A, VGE = 15V IC = 35A, VCC = 180V RG = 10Ω, L=250µH, LS= 150nH TJ = 25°C IC = 35A, VCC = 180V RG = 10Ω, L=250µH, LS= 150nH TJ = 150°C
e
ns
ns
ns µJ
pF
VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V VCE = 30V ƒ = 1.0MHz, See Fig.13 Between lead, 6mm (0.25in.) from package and center of die contact
nH
Diode Characteristics @ TJ = 25°C (unless otherwise specified)
IF(AV) IFSM VF trr Parameter Average Forward Current Non Repetitive Peak Surge Current Forward Voltage Diode Reverse Recovery Time Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– 1.0 0.83 ––– 27 40 30 106 2.2 5.3 Max. 8.0 100 1.25 1.0 35 ––– ––– ––– ––– ––– ––– Conditions Units Tc = 155°C A TJ = 155°C, PW = 6.0ms half sine wave A IF = 8A V IF = 8A, TJ = 125°C ns IF = 1.0A, di/dt = -50A/µs, VR = 30V TJ = 25°C IF = 8.0A, VR = 200V, TJ = 125°C di/dt = 200A/µs TJ = 25°C IF = 8.0A, VR = 200V, TJ = 125°C di/dt = 200A/µs TJ = 25°C IF = 8.0A, VR = 200V, TJ = 125°C di/dt = 200A/µs
Qrr Irr
Diode Reverse Recovery Charge Peak Reverse Recovery Current
nC A
Notes: Half sine wave with duty cycle = 0.25, ton=1µsec. Rθ is measured at TJ of approximately 90°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRGP4055DPbF
200
Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE
200
Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE
150
Bottom
150
Bottom
ICE (A)
ICE (A)
100
100
50
50
0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V)
0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V)
Fig 1. Typical Output Characteristics @ 25°C
200
Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE
Fig 2. Typical Output Characteristics @ 75°C
200
Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE
150
Bottom
150
Bottom
ICE (A)
ICE (A)
100
100
50
50
0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V)
0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V)
Fig 3. Typical Output Characteristics @ 125°C
300
IC, Collector-to-Emitter Current (A)
Fig 4. Typical Output Characteristics @ 150°C
20
T J = 25°C 250 200 150 100
5
IC = 35A
T J = 150°C
V CE (V)
15 TJ = 25°C TJ = 150°C
10
50 10µs PULSE WIDTH 0 0 5 10 15 VGE, Gate-to-Emitter Voltage (V)
0 5 10 V GE (V) 15 20
Fig 5. Typical Transfer Characteristics
Fig 6. VCE(ON) vs. Gate Voltage
www.irf.com
3
IRGP4055DPbF
120 100
IC, Collector Current (A)
300 280
Limited By Package
Repetitive Peak Current (A)
260 240 220 200 180 160 140 120 100 80 60 40 20 0
ton= 1µs Duty cycle = 0.25 Half Sine Wave
80 60 40 20 0 0 25 50 75 100 125 150 TC , Case Temperature (°C)
25
50
75
100
125
150
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
1000 900
Energy per Pulse (µJ)
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000 L = 220nH C = 0.4µF
V CC = 240V L = 220nH C = variable
Energy per Pulse (µJ)
900 800 700
800 700 600 25°C 500 400 300 160 170 180 190 200 210 220 230 100°C
100°C 600 500 25°C 400 300 200 150 160 170 180 190 200 210 220 230 240 V CE, Collector-to-Emitter Voltage (V)
Ic , Peak Collector Current (A)
Fig 9. Typical EPULSE vs. Collector Current
1200 V CC = 240V 1000
Energy Pulse (µJ)
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000 OPERATION IN THIS AREA LIMITED BY V CE(on)
L = 220nH t = 1µs half sine
C= 0.4µF
100
800 C= 0.3µF 600 C= 0.2µF 400
1µsec 10µsec
IC (A)
100µsec
10
200 25 50 75 100 125 150 TJ, Temperature (ºC)
1 1 10 VCE (V) 100 1000
Fig 11. EPULSE vs. Temperature
Fig 12. Forrward Bias Safe Operating Area
4
www.irf.com
IRGP4055DPbF
100000 VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C oes = C ce + C gc
16 14 12 10 8 6 4 2 0 IC = 30A IC = 35A
10000
Capacitance (pF)
Cies
1000
100
Coes Cres
10 0 50 100 150 200
V GE, Gate-to-Emitter Voltage (V)
C res = C gc
0
25
50
75
100
125
150
V CE, Collector-toEmitter-Voltage(V)
Q G, Total Gate Charge (nC)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
1 D = 0.50
Thermal Response ( Z thJC )
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
0.1
0.20 0.10 0.05 0.02 0.01
0.01
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.0001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Impedance Z thJC (°C/W)
1
D = 0.50 D = 0.20 D = 0.10 D = 0.05 D = 0.02 D = 0.01 Single Pulse (Thermal Resistance) Notes: 1. Duty factor D = t1/ t2
PDM
t1 t2
0.1
. .
0.01 0.00001
2. Peak Tj = Pdm x ZthJC + Tc
0.0001
0.001
0.01
0.1
1
10
t1, Rectangular Pulse Duration (Seconds) Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Diode)
www.irf.com
5
IRGP4055DPbF
100
IF , Instantaneous Forward Current (A)
100
10 Tj = 125°C Tj = 25°C
trr ( ns )
If = 8A, Tj = 125˚C
If = 8A, Tj = 25˚C
1 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VFM , Forward Voltage Drop (V)
10 100
di F /dt (A/µs )
1000
Fig. 17 - Typical Forward Voltage Drop Characteristics
1000
Fig 18. Typical Reverse Recovery vs. diF /dt
Qrr ( nC )
If = 8A, Tj = 125˚C
100
If = 8A, Tj = 25˚C
Fig.20 - Switching Loss Circuit
A
RG
DRIVER L
C
10 100
1000
di F /dt (A/µs ) Fig. 19- Typical Stored Charge vs. di F /dt
VCE Energy IC Current
B
VCC
RG
Ipulse DUT
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
PULSE A
L
PULSE B
0
DUT 1K
VCC
tST
Fig 21c. EPULSE Test Waveforms
Fig. 22 - Gate Charge Circuit (turn-off)
6
www.irf.com
IRGP4055DPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6 ,6 $1 ,5)3( :,7+ $66(0%/< /27 &2'( $66(0%/(' 21 :: ,1 7+( $66(0%/< /,1( + 1RWH 3 LQ DVVHPEO\ OLQH SRVLWLRQ LQGLFDWHV /HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27 &2'( 3$57 180%(5
,5)3(
à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$&
'$7( &2'(