0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGP4055DPBF

IRGP4055DPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGP4055DPBF - PDP TRENCH IGBT - International Rectifier

  • 详情介绍
  • 数据手册
  • 价格&库存
IRGP4055DPBF 数据手册
PD - 97222 PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package IRGP4055DPbF Key Parameters 300 1.70 270 150 V V A °C VCE min VCE(ON) typ. @ 110A IRP max @ TC= 25°C c TJ max C C G E C G E n-channel G Gate C Collector TO-247AC E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current c Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw 300 10lbxin (1.1Nxm) Typ. ––– 1.45 0.20 ––– 2.0 (0.07) Max. 0.48 2.5 ––– 70 ––– N Units °C/W Max. ±30 110 60 270 255 102 2.04 -40 to + 150 Units V A W W/°C °C Thermal Resistance RθJC (IGBT) RθJC (Diode) RθCS RθJA Parameter Thermal Resistance Junction-to-Case-(each IGBT) d Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Weight g (oz) www.irf.com 1 06/14/06 IRGP4055DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) BVCES ∆ΒVCES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ ICES IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst EPULSE Parameter Collector-to-Emitter Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Collector-to-Emitter Voltage Min. 300 ––– ––– ––– ––– ––– 2.6 ––– ––– ––– ––– ––– ––– ––– ––– — — — — — — — — 100 ––– ––– Ciss Coss Crss LC LE Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance Internal Emitter Inductance ––– ––– ––– ––– ––– Typ. ––– 0.23 1.10 1.70 2.35 1.95 ––– -11 2.0 100 ––– ––– 38 132 42 44 39 245 152 42 40 362 309 ––– 705 915 4280 200 125 5.0 13 Max. ––– ––– 1.30 2.10 ––– ––– 5.0 ––– 25 ––– 100 -100 ––– ––– ––– 57 55 308 198 — — — — ––– ––– ––– ––– ––– ––– ––– ––– Conditions Units VGE = 0V, ICE = 1 mA V V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 35A VGE = 15V, ICE = 110A V VGE = 15V, ICE = 200A VGE = 15V, ICE = 110A, TJ = 150°C VCE = VGE, ICE = 1mA V e e e Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time Shoot Through Blocking Time Energy per Pulse mV/°C µA VCE = 300V, VGE = 0V VCE = 300V, VGE = 0V, TJ = 150°C nA VGE = 30V VGE = -30V VCE = 25V, ICE = 35A S nC VCE = 200V, IC = 35A, VGE = 15V IC = 35A, VCC = 180V RG = 10Ω, L=250µH, LS= 150nH TJ = 25°C IC = 35A, VCC = 180V RG = 10Ω, L=250µH, LS= 150nH TJ = 150°C e ns ns ns µJ pF VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V VCE = 30V ƒ = 1.0MHz, See Fig.13 Between lead, 6mm (0.25in.) from package and center of die contact nH Diode Characteristics @ TJ = 25°C (unless otherwise specified) IF(AV) IFSM VF trr Parameter Average Forward Current Non Repetitive Peak Surge Current Forward Voltage Diode Reverse Recovery Time Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– 1.0 0.83 ––– 27 40 30 106 2.2 5.3 Max. 8.0 100 1.25 1.0 35 ––– ––– ––– ––– ––– ––– Conditions Units Tc = 155°C A TJ = 155°C, PW = 6.0ms half sine wave A IF = 8A V IF = 8A, TJ = 125°C ns IF = 1.0A, di/dt = -50A/µs, VR = 30V TJ = 25°C IF = 8.0A, VR = 200V, TJ = 125°C di/dt = 200A/µs TJ = 25°C IF = 8.0A, VR = 200V, TJ = 125°C di/dt = 200A/µs TJ = 25°C IF = 8.0A, VR = 200V, TJ = 125°C di/dt = 200A/µs Qrr Irr Diode Reverse Recovery Charge Peak Reverse Recovery Current nC A Notes:  Half sine wave with duty cycle = 0.25, ton=1µsec. ‚ Rθ is measured at TJ of approximately 90°C. ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRGP4055DPbF 200 Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 200 Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 150 Bottom 150 Bottom ICE (A) ICE (A) 100 100 50 50 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V) 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V) Fig 1. Typical Output Characteristics @ 25°C 200 Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE Fig 2. Typical Output Characteristics @ 75°C 200 Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 150 Bottom 150 Bottom ICE (A) ICE (A) 100 100 50 50 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V) 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V) Fig 3. Typical Output Characteristics @ 125°C 300 IC, Collector-to-Emitter Current (A) Fig 4. Typical Output Characteristics @ 150°C 20 T J = 25°C 250 200 150 100 5 IC = 35A T J = 150°C V CE (V) 15 TJ = 25°C TJ = 150°C 10 50 10µs PULSE WIDTH 0 0 5 10 15 VGE, Gate-to-Emitter Voltage (V) 0 5 10 V GE (V) 15 20 Fig 5. Typical Transfer Characteristics Fig 6. VCE(ON) vs. Gate Voltage www.irf.com 3 IRGP4055DPbF 120 100 IC, Collector Current (A) 300 280 Limited By Package Repetitive Peak Current (A) 260 240 220 200 180 160 140 120 100 80 60 40 20 0 ton= 1µs Duty cycle = 0.25 Half Sine Wave 80 60 40 20 0 0 25 50 75 100 125 150 TC , Case Temperature (°C) 25 50 75 100 125 150 Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature 1000 900 Energy per Pulse (µJ) Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1000 L = 220nH C = 0.4µF V CC = 240V L = 220nH C = variable Energy per Pulse (µJ) 900 800 700 800 700 600 25°C 500 400 300 160 170 180 190 200 210 220 230 100°C 100°C 600 500 25°C 400 300 200 150 160 170 180 190 200 210 220 230 240 V CE, Collector-to-Emitter Voltage (V) Ic , Peak Collector Current (A) Fig 9. Typical EPULSE vs. Collector Current 1200 V CC = 240V 1000 Energy Pulse (µJ) Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1000 OPERATION IN THIS AREA LIMITED BY V CE(on) L = 220nH t = 1µs half sine C= 0.4µF 100 800 C= 0.3µF 600 C= 0.2µF 400 1µsec 10µsec IC (A) 100µsec 10 200 25 50 75 100 125 150 TJ, Temperature (ºC) 1 1 10 VCE (V) 100 1000 Fig 11. EPULSE vs. Temperature Fig 12. Forrward Bias Safe Operating Area 4 www.irf.com IRGP4055DPbF 100000 VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C oes = C ce + C gc 16 14 12 10 8 6 4 2 0 IC = 30A IC = 35A 10000 Capacitance (pF) Cies 1000 100 Coes Cres 10 0 50 100 150 200 V GE, Gate-to-Emitter Voltage (V) C res = C gc 0 25 50 75 100 125 150 V CE, Collector-toEmitter-Voltage(V) Q G, Total Gate Charge (nC) Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage 1 D = 0.50 Thermal Response ( Z thJC ) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage 0.1 0.20 0.10 0.05 0.02 0.01 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 0.0001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Impedance Z thJC (°C/W) 1 D = 0.50 D = 0.20 D = 0.10 D = 0.05 D = 0.02 D = 0.01 Single Pulse (Thermal Resistance) Notes: 1. Duty factor D = t1/ t2 PDM t1 t2 0.1 . . 0.01 0.00001 2. Peak Tj = Pdm x ZthJC + Tc 0.0001 0.001 0.01 0.1 1 10 t1, Rectangular Pulse Duration (Seconds) Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Diode) www.irf.com 5 IRGP4055DPbF 100 IF , Instantaneous Forward Current (A) 100 10 Tj = 125°C Tj = 25°C trr ( ns ) If = 8A, Tj = 125˚C If = 8A, Tj = 25˚C 1 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VFM , Forward Voltage Drop (V) 10 100 di F /dt (A/µs ) 1000 Fig. 17 - Typical Forward Voltage Drop Characteristics 1000 Fig 18. Typical Reverse Recovery vs. diF /dt Qrr ( nC ) If = 8A, Tj = 125˚C 100 If = 8A, Tj = 25˚C Fig.20 - Switching Loss Circuit A RG DRIVER L C 10 100 1000 di F /dt (A/µs ) Fig. 19- Typical Stored Charge vs. di F /dt VCE Energy IC Current B VCC RG Ipulse DUT Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms PULSE A L PULSE B 0 DUT 1K VCC tST Fig 21c. EPULSE Test Waveforms Fig. 22 - Gate Charge Circuit (turn-off) 6 www.irf.com IRGP4055DPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6 ,6 $1 ,5)3( :,7+ $66(0%/< /27 &2'(  $66(0%/(' 21 ::   ,1 7+( $66(0%/< /,1( + 1RWH 3 LQ DVVHPEO\ OLQH SRVLWLRQ LQGLFDWHV /HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27 &2'( 3$57 180%(5 ,5)3( à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$& '$7( &2'(
IRGP4055DPBF
### 物料型号 - 型号:IRGP4055DPbF

### 器件简介 IRGP4055DPbF是一种专为等离子显示屏(PDP)应用设计的IGBT。它采用先进的沟槽IGBT技术,具有低VCE(on)和低EPULSE™每硅片区域的评级,能够提高面板效率。此外,它还具有150°C的工作结温和高重复峰值电流能力,使其成为PDP应用中高效、稳健和可靠的IGBT。

### 引脚分配 - G:Gate(栅极) - E:Emitter(发射极)

### 参数特性 - VcE(min):300V - VCE(ON)典型值@110A:1.70V - lp max @ T=25°C:270A - T max:150°C

### 功能详解 IRGP4055DPbF利用其低VCE(on)和低EPULSE™特性提高面板效率,适用于PDP应用。此外,它还具有高重复峰值电流能力和150°C的工作结温,使其成为一个高效、稳健和可靠的设备。

### 应用信息 该IGBT特别适用于等离子显示屏面板的应用。

### 封装信息 - 封装类型:TO-247AC - 封装细节:TO-247AC封装不建议用于表面贴装应用。
IRGP4055DPBF 价格&库存

很抱歉,暂时无法提供与“IRGP4055DPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货