0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGP4062DPBF

IRGP4062DPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGP4062DPBF - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International ...

  • 数据手册
  • 价格&库存
IRGP4062DPBF 数据手册
PD - 97190 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 µS short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package IRGB4062DPbF IRGP4062DPbF C VCES = 600V IC = 24A, TC = 100°C G E tSC ≥ 5µs, TJ(max) = 175°C n-channel C C VCE(on) typ. = 1.65V Benefits • High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI E C G TO-220AB E C G TO-247AC G Gate C Collector Max. 600 48 24 96 96 48 24 96 ±20 ±30 250 125 -55 to +175 E Emitter Units V Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load Current Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) c e A Continuous Gate-to-Emitter Voltage V W °C Thermal Resistance Parameter RθJC (IGBT) RθJC (Diode) RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) TO-220AB Thermal Resistance Junction-to-Case-(each Diode) TO-220AB Thermal Resistance Junction-to-Case-(each IGBT) TO-247AC Thermal Resistance Junction-to-Case-(each Diode) TO-247AC Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Min. ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 0.50 80 Max. 0.60 1.53 0.65 1.62 ––– ––– Units °C/W 1 www.irf.com 02/24/06 IRGB/P4062DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ Min. 600 — — — — 4.0 — — — — — — — Typ. — 0.30 1.60 2.03 2.04 — -18 17 2.0 775 1.80 1.28 — Max. Units — — 1.95 — — 6.5 — — 25 — 2.6 — ±100 nA V V V Conditions VGE = 0V, IC = 100µA Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage f Ref.Fig CT6 CT6 5,6,7 9,10,11 V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 24A, VGE = 15V, TJ = 25°C V IC = 24A, VGE = 15V, TJ = 150°C IC = 24A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 700µA VCE(on) VGE(th) ∆VGE(th)/∆TJ Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current 9, 10, 11, 12 gfe ICES VFM IGES mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) S VCE = 50V, IC = 24A, PW = 80µs µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C IF = 24A IF = 24A, TJ = 175°C VGE = ±20V 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Min. — — — — — — — — — — — — — — — — — — — — Typ. 50 13 21 115 600 715 41 22 104 29 420 840 1260 40 24 125 39 1490 129 45 Max. Units 75 20 31 201 700 901 53 31 115 41 — — — — — — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 24A VGE = 15V VCC = 400V Conditions Ref.Fig 24 CT1 IC = 24A, VCC = 400V, VGE = 15V RG = 10Ω , L = 200µH, LS = 150nH, TJ = 25°C Energy losses include tail & diode reverse recovery CT4 IC = 24A, VCC = 400V, VGE = 15V RG = 10Ω , L = 200µH, LS = 150nH, TJ = 25°C CT4 IC = 24A, VCC = 400V, VGE=15V RG=10Ω , L=100µH, LS=150nH, TJ = 175°C IC = 24A, VCC = 400V, VGE = 15V RG = 10Ω , L = 200µH, LS = 150nH TJ = 175°C fà 13, 15 CT4 WF1, WF2 14, 16 CT4 WF1 WF2 23 Energy losses include tail & diode reverse recovery f = 1.0Mhz TJ = 175°C, IC = 96A VCC = 480V, Vp =600V Rg = 10Ω , VGE = +15V to 0V 4 CT2 FULL SQUARE 5 — — — — 621 89 37 — — — — µs µJ ns A VCC = 400V, Vp =600V Rg = 10Ω , VGE = +15V to 0V TJ = 175°C VCC = 400V, IF = 24A VGE = 15V, Rg = 10Ω , L =200µH, Ls = 150nH 22, CT3 WF4 17, 18, 19 20, 21 WF3 Notes:  VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10Ω. ‚ This is only applied to TO-220AB package. ƒ Pulse width limited by max. junction temperature. „ Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 www.irf.com IRGB/P4062DPbF 50 45 40 35 Ptot (W) 250 200 150 100 50 0 300 30 IC (A) 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 180 T C (°C) 0 20 40 60 80 100 120 140 160 180 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature 1000 Fig. 2 - Power Dissipation vs. Case Temperature 1000 100 100 10µsec IC (A) 10 100µsec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100 VCE (V) 1000 10000 1msec DC IC (A) 10 1 10 100 VCE (V) 1000 Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V 90 80 70 60 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 90 80 70 60 Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V ICE (A) ICE (A) 50 40 30 20 10 0 0 1 2 3 4 VCE (V) 5 50 40 30 20 10 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 6 7 8 0 1 2 3 4 VCE (V) 5 6 7 8 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 3 IRGB/P4062DPbF 90 80 70 60 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 100 80 -40°c 25°C 175°C ICE (A) IF (A) 50 40 30 20 10 0 0 1 2 3 4 VCE (V) 5 6 7 8 60 40 20 0 0.0 1.0 VF (V) 2.0 3.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 20 18 16 14 Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 20 18 16 14 VCE (V) 10 8 6 4 2 0 5 10 VGE (V) ICE = 24A ICE = 48A VCE (V) 12 ICE = 12A 12 10 8 6 4 2 0 ICE = 12A ICE = 24A ICE = 48A 15 20 5 10 VGE (V) 15 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 18 16 14 VCE (V) ICE (A) 100 80 120 Fig. 10 - Typical VCE vs. VGE TJ = 25°C 12 10 8 6 4 2 0 5 10 VGE (V) ICE = 12A T J = 25°C TJ = 175°C ICE = 24A ICE = 48A 60 40 20 0 15 20 0 5 VGE (V) 10 15 Fig. 11 - Typical VCE vs. VGE TJ = 175°C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 4 www.irf.com IRGB/P4062DPbF 1800 1600 1400 1200 Swiching Time (ns) tdOFF 1000 Energy (µJ) 1000 800 600 400 200 0 0 10 EOFF 100 tdON tF 10 tR EON 1 20 30 IC (A) 40 50 60 10 20 30 IC (A) 40 50 Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V 1600 1400 1200 EOFF Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V 1000 Energy (µJ) 1000 800 600 400 200 0 0 25 50 75 100 125 EON Swiching Time (ns) tdOFF 100 tdON tF tR 10 0 25 50 75 100 125 RG ( Ω) Rg ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V 40 R G = 10Ω 35 30 Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V 45 40 35 IRR (A) 25 20 15 10 0 10 20 30 IF (A) 40 50 60 R G = 47Ω RG = 100Ω IRR (A) R G = 22Ω 30 25 20 15 10 5 0 25 50 75 100 125 RG (Ω) Fig. 17 - Typ. Diode IRR vs. IF TJ = 175°C Fig. 18 - Typ. Diode IRR vs. RG TJ = 175°C www.irf.com 5 IRGB/P4062DPbF 45 40 35 4000 3500 3000 QRR (µC) 24A 10Ω 22Ω 30 IRR (A) 2500 2000 1500 100Ω 25 20 15 10 5 0 500 1000 1500 diF /dt (A/µs) 47Ω 12A 6.0A 1000 500 0 500 1000 1500 diF /dt (A/µs) Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 24A; TJ = 175°C Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C 16 14 280 240 200 1000 800 R G = 10Ω RG = 22Ω 400 R G = 47Ω 12 Energy (µJ) Current (A) Time (µs) 600 10 8 160 120 80 40 8 10 12 14 16 18 VGE (V) RG = 100Ω 200 6 4 0 10 20 30 IF (A) 40 50 60 0 10000 Fig. 21 - Typ. Diode ERR vs. IF TJ = 175°C Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C 16 VGE, Gate-to-Emitter Voltage (V) 14 12 10 8 6 4 2 0 V CES = 300V V CES = 400V Capacitance (pF) 1000 Cies 100 Coes Cres 10 0 20 40 60 80 100 VCE (V) 0 5 10 15 20 25 30 35 40 45 50 55 Q G, Total Gate Charge (nC) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 24 - Typical Gate Charge vs. VGE ICE = 24A; L = 600µH 6 www.irf.com IRGB/P4062DPbF 1 D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ 0.01 0.02 0.01 τJ Ri (°C/W) τi (sec) 0.2329 0.000234 0.3631 0.007009 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-220AB 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ τJ τ1 0.1 R1 R1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.476 0.000763 0.647 0.406 0.003028 0.023686 0.01 τ1 τ2 Ci= τi /Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 0.0001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-220AB www.irf.com 7 IRGB/P4062DPbF 1 D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 0.02 τJ R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ 0.01 Ri (°C/W) τi (sec) 0.2782 0.000311 0.3715 0.006347 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 0.001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.1 0.01 Ri (°C/W) τi (sec) 0.693 0.001222 0.621 0.307 0.005254 0.038140 τ1 τ2 Ci= τi /Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 0.0001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-247AC 8 www.irf.com IRGB/P4062DPbF L L 0 D UT 1K VC C 80 V Rg DU T 4 80V Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit d io d e clamp / DU T L 4x DC 360V - 5V DU T / D RIVER Rg DUT VCC Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM C force 400µH D1 10K C sense DUT Rg VCC G force DUT 0.0075µ E sense E force Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - BVCES Filter Circuit www.irf.com 9 IRGB/P4062DPbF 500 25 500 50 400 20 400 tr 40 300 VCE (V) tf 90% ICE 15 300 VCE (V) TEST C 30 200 10 200 90% test 20 100 5% ICE 5% VCE 5 100 10% test 5% VCE 10 0 EOFF Loss -100 -0.50 0.00 0.50 1.00 1.50 0 0 EON 0 -5 2.00 -100 11.70 11.80 11.90 Time (µs) 12.00 -10 12.10 Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 25 20 15 10 5 VCE (V) 500 250 QRR tRR 400 VCE 300 ICE 200 200 150 I CE (A) I RR (A) 0 -5 -10 -15 -20 -25 -0.05 Peak IRR 10% Peak IRR 100 100 50 0 0 0.05 time (µS) 0.15 -100 -5.00 0.00 5.00 -50 10.00 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 10 www.irf.com IRGB/P4062DPbF Dimensions are shown in millimeters (inches) TO-220AB Package Outline TO-220AB Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSA  à GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqÃÃA…rrÅ Q6SUÃIVH7@S DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ 96U@Ã8P9@ `@6SÃÃ2Ã! X@@Fà ( GDI@Ã8 TO-220AB package is not recommended for Surface Mount Application. www.irf.com 11 IRGB/P4062DPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSAQ@"à XDUCÃ6TT@H7G`à GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ I‚‡r)ÃÅQÅÃvÃh††r€iy’Ãyvr†v‡v‚ vqvph‡r†ÃÅGrhqA…rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S ,5)3( à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$& 96U@Ã8P9@ `@6Sà Ã2Ã! X@@FÃ"$ GDI@ÃC TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/06 12 www.irf.com
IRGP4062DPBF 价格&库存

很抱歉,暂时无法提供与“IRGP4062DPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货