PD - 97190
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features
• • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 µS short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package
IRGB4062DPbF IRGP4062DPbF
C
VCES = 600V IC = 24A, TC = 100°C
G E
tSC ≥ 5µs, TJ(max) = 175°C
n-channel
C C
VCE(on) typ. = 1.65V
Benefits
• High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI
E C G TO-220AB
E C G TO-247AC
G Gate
C Collector
Max.
600 48 24 96 96 48 24 96 ±20 ±30 250 125 -55 to +175
E Emitter
Units
V
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load Current Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
c e
A
Continuous Gate-to-Emitter Voltage
V W
°C
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (Diode) RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) TO-220AB Thermal Resistance Junction-to-Case-(each Diode) TO-220AB Thermal Resistance Junction-to-Case-(each IGBT) TO-247AC Thermal Resistance Junction-to-Case-(each Diode) TO-247AC Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
Min.
––– ––– ––– ––– ––– –––
Typ.
––– ––– ––– ––– 0.50 80
Max.
0.60 1.53 0.65 1.62 ––– –––
Units
°C/W
1
www.irf.com
02/24/06
IRGB/P4062DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
Min.
600 — — — — 4.0 — — — — — — —
Typ.
— 0.30 1.60 2.03 2.04 — -18 17 2.0 775 1.80 1.28 —
Max. Units
— — 1.95 — — 6.5 — — 25 — 2.6 — ±100 nA V V V
Conditions
VGE = 0V, IC = 100µA
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
f
Ref.Fig CT6 CT6 5,6,7 9,10,11
V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 24A, VGE = 15V, TJ = 25°C V IC = 24A, VGE = 15V, TJ = 150°C IC = 24A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 700µA
VCE(on) VGE(th)
∆VGE(th)/∆TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
9, 10, 11, 12
gfe ICES VFM IGES
mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) S VCE = 50V, IC = 24A, PW = 80µs µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C IF = 24A IF = 24A, TJ = 175°C VGE = ±20V
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min.
— — — — — — — — — — — — — — — — — — — —
Typ.
50 13 21 115 600 715 41 22 104 29 420 840 1260 40 24 125 39 1490 129 45
Max. Units
75 20 31 201 700 901 53 31 115 41 — — — — — — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 24A VGE = 15V VCC = 400V
Conditions
Ref.Fig 24 CT1
IC = 24A, VCC = 400V, VGE = 15V RG = 10Ω , L = 200µH, LS = 150nH, TJ = 25°C
Energy losses include tail & diode reverse recovery
CT4
IC = 24A, VCC = 400V, VGE = 15V RG = 10Ω , L = 200µH, LS = 150nH, TJ = 25°C
CT4
IC = 24A, VCC = 400V, VGE=15V RG=10Ω , L=100µH, LS=150nH, TJ = 175°C IC = 24A, VCC = 400V, VGE = 15V RG = 10Ω , L = 200µH, LS = 150nH TJ = 175°C
fÃ
13, 15 CT4 WF1, WF2 14, 16 CT4 WF1 WF2 23
Energy losses include tail & diode reverse recovery
f = 1.0Mhz TJ = 175°C, IC = 96A VCC = 480V, Vp =600V Rg = 10Ω , VGE = +15V to 0V
4 CT2
FULL SQUARE 5 — — — — 621 89 37 — — — — µs µJ ns A
VCC = 400V, Vp =600V Rg = 10Ω , VGE = +15V to 0V TJ = 175°C VCC = 400V, IF = 24A VGE = 15V, Rg = 10Ω , L =200µH, Ls = 150nH
22, CT3 WF4 17, 18, 19 20, 21
WF3
Notes: VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10Ω. This is only applied to TO-220AB package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGB/P4062DPbF
50 45 40 35
Ptot (W)
250 200 150 100 50 0 300
30
IC (A)
25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 180 T C (°C)
0
20
40
60
80 100 120 140 160 180 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
1000
Fig. 2 - Power Dissipation vs. Case Temperature
1000
100
100
10µsec
IC (A)
10 100µsec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100 VCE (V) 1000 10000 1msec DC
IC (A)
10
1 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V
90 80 70 60 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 90 80 70 60
Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V
ICE (A)
ICE (A)
50 40 30 20 10 0 0 1 2 3 4 VCE (V) 5
50 40 30 20 10 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
6
7
8
0
1
2
3
4 VCE (V)
5
6
7
8
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
www.irf.com
3
IRGB/P4062DPbF
90 80 70 60 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
120 100 80 -40°c 25°C 175°C
ICE (A)
IF (A)
50 40 30 20 10 0 0 1 2 3 4 VCE (V) 5 6 7 8
60 40 20 0 0.0
1.0 VF (V)
2.0
3.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs
20 18 16 14
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
20 18 16 14
VCE (V)
10 8 6 4 2 0 5 10 VGE (V)
ICE = 24A ICE = 48A
VCE (V)
12
ICE = 12A
12 10 8 6 4 2 0
ICE = 12A ICE = 24A ICE = 48A
15
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
20 18 16 14
VCE (V)
ICE (A)
100 80 120
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 12A
T J = 25°C TJ = 175°C
ICE = 24A ICE = 48A
60 40 20 0
15
20
0
5 VGE (V)
10
15
Fig. 11 - Typical VCE vs. VGE TJ = 175°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
4
www.irf.com
IRGB/P4062DPbF
1800 1600 1400 1200
Swiching Time (ns)
tdOFF 1000
Energy (µJ)
1000 800 600 400 200 0 0 10
EOFF
100 tdON tF 10 tR
EON
1
20
30 IC (A)
40
50
60
10
20
30 IC (A)
40
50
Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V
1600 1400 1200 EOFF
Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V
1000
Energy (µJ)
1000 800 600 400 200 0 0 25 50 75 100 125 EON
Swiching Time (ns)
tdOFF
100 tdON tF tR 10 0 25 50 75 100 125 RG ( Ω)
Rg ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
40 R G = 10Ω 35 30
Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
45 40 35
IRR (A)
25 20 15 10 0 10 20 30 IF (A) 40 50 60 R G = 47Ω RG = 100Ω
IRR (A)
R G = 22Ω
30 25 20 15 10 5 0 25 50 75 100 125 RG (Ω)
Fig. 17 - Typ. Diode IRR vs. IF TJ = 175°C
Fig. 18 - Typ. Diode IRR vs. RG TJ = 175°C
www.irf.com
5
IRGB/P4062DPbF
45 40 35
4000 3500 3000
QRR (µC)
24A 10Ω 22Ω
30
IRR (A)
2500 2000 1500 100Ω
25 20 15 10 5 0 500 1000 1500 diF /dt (A/µs)
47Ω 12A
6.0A 1000 500 0 500 1000 1500 diF /dt (A/µs)
Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 24A; TJ = 175°C
Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C
16 14 280 240 200
1000
800 R G = 10Ω RG = 22Ω 400 R G = 47Ω
12
Energy (µJ)
Current (A)
Time (µs)
600
10 8
160 120 80 40 8 10 12 14 16 18 VGE (V)
RG = 100Ω
200
6 4
0 10 20 30 IF (A) 40 50 60
0
10000
Fig. 21 - Typ. Diode ERR vs. IF TJ = 175°C
Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C
16
VGE, Gate-to-Emitter Voltage (V)
14 12 10 8 6 4 2 0
V CES = 300V V CES = 400V
Capacitance (pF)
1000
Cies
100
Coes
Cres 10 0 20 40 60 80 100 VCE (V)
0
5 10 15 20 25 30 35 40 45 50 55 Q G, Total Gate Charge (nC)
Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE ICE = 24A; L = 600µH
6
www.irf.com
IRGB/P4062DPbF
1 D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05
R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ
0.01
0.02 0.01
τJ
Ri (°C/W) τi (sec) 0.2329 0.000234 0.3631 0.007009
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-220AB
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
τJ τJ τ1
0.1
R1 R1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
Ri (°C/W) τi (sec) 0.476 0.000763 0.647 0.406 0.003028 0.023686
0.01
τ1
τ2
Ci= τi /Ri Ci i/Ri
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.0001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-220AB
www.irf.com
7
IRGB/P4062DPbF
1
D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05 0.02
τJ R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ
0.01
Ri (°C/W) τi (sec) 0.2782 0.000311 0.3715 0.006347
0.01 SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
0.01
Ri (°C/W) τi (sec) 0.693 0.001222 0.621 0.307 0.005254 0.038140
τ1
τ2
Ci= τi /Ri Ci i/Ri
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.0001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-247AC
8
www.irf.com
IRGB/P4062DPbF
L
L
0
D UT 1K
VC C
80 V Rg
DU T
4 80V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp / DU T
L
4x
DC
360V
- 5V DU T / D RIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
C force
400µH D1 10K C sense
DUT
Rg
VCC
G force
DUT
0.0075µ
E sense E force
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
www.irf.com
9
IRGB/P4062DPbF
500 25
500
50
400
20
400 tr
40
300 VCE (V)
tf
90% ICE
15
300 VCE (V)
TEST C
30
200
10
200
90% test
20
100
5% ICE 5% VCE
5
100
10% test 5% VCE
10
0 EOFF Loss -100 -0.50 0.00 0.50 1.00 1.50
0
0 EON
0
-5 2.00
-100 11.70
11.80
11.90 Time (µs)
12.00
-10 12.10
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4
25 20 15 10 5
VCE (V)
500
250
QRR tRR
400 VCE 300 ICE 200
200
150 I CE (A)
I RR (A)
0 -5 -10 -15 -20 -25 -0.05 Peak IRR
10% Peak IRR
100
100
50
0
0
0.05 time (µS)
0.15
-100 -5.00
0.00
5.00
-50 10.00
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3
10
www.irf.com
IRGB/P4062DPbF
Dimensions are shown in millimeters (inches)
TO-220AB Package Outline
TO-220AB Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSA Ã GPUÃ8P9@Ã &'( 6TT@H7G@9ÃPIÃXXÃ (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqÃÃA
rrÅ Q6SUÃIVH7@S
DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@
96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ ( GDI@Ã8
TO-220AB package is not recommended for Surface Mount Application.
www.irf.com
11
IRGB/P4062DPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSAQ@"Ã XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
,5)3(
à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$&
96U@Ã8P9@ `@6SÃ Ã2Ã! X@@FÃ"$ GDI@ÃC
TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/06
12
www.irf.com