PD - 97210
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features
• • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 µS short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package
C
IRGP4063DPbF
VCES = 600V IC = 48A, TC = 100°C
G E
tSC ≥ 5µs, TJ(max) = 175°C
n-channel
VCE(on) typ. = 1.65V
Benefits
• High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI
G Gate
C
E C G TO-247AC
C Collector
E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load Current Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Max.
600 96 48 192 192 96 48 192 ±20 ±30 330 170 -55 to +175
Units
V
c e
A
Continuous Gate-to-Emitter Voltage
V W
°C
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
Min.
––– ––– ––– –––
Typ.
––– ––– 0.24 80
Max.
0.45 0.92 ––– –––
Units
°C/W
1
www.irf.com
05/11/06
IRGP4063DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
Min.
600 — — — — 4.0 — — — — — — —
Typ.
— 0.30 1.65 2.0 2.05 — -21 32 1.0 450 1.95 1.45 —
Max. Units
— — 2.14 — — 6.5 — — 150 1000 2.91 — ±100 nA V V V
Conditions
VGE = 0V, IC = 150µA
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
f
Ref.Fig CT6 CT6 5,6,7 9,10,11
V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 48A, VGE = 15V, TJ = 25°C V IC = 48A, VGE = 15V, TJ = 150°C IC = 48A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 1.4mA
VCE(on) VGE(th)
∆VGE(th)/∆TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
9, 10, 11, 12
gfe ICES VFM IGES
mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) S VCE = 50V, IC = 48A, PW = 80µs µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C IF = 48A IF = 48A, TJ = 175°C VGE = ±20V
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min.
— — — — — — — — — — — — — — — — — — — —
Typ.
95 28 35 625 1275 1900 60 40 145 35 1625 1585 3210 55 45 165 45 3025 245 90
Max. Units
140 42 53 1141 1481 2622 78 56 176 46 — — — — — — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 48A VGE = 15V VCC = 400V
Conditions
Ref.Fig 24 CT1
IC = 48A, VCC = 400V, VGE = 15V RG = 10Ω , L = 200µH, LS = 150nH, TJ = 25°C
Energy losses include tail & diode reverse recovery
CT4
IC = 48A, VCC = 400V, VGE = 15V RG = 10Ω , L = 200µH, LS = 150nH, TJ = 25°C
CT4
IC = 48A, VCC = 400V, VGE=15V RG=10Ω , L=200µH, LS=150nH, TJ = 175°C IC = 48A, VCC = 400V, VGE = 15V RG = 10Ω , L = 200µH, LS = 150nH TJ = 175°C
fÃ
13, 15 CT4 WF1, WF2 14, 16 CT4 WF1 WF2 23
Energy losses include tail & diode reverse recovery
f = 1.0Mhz TJ = 175°C, IC = 192A VCC = 480V, Vp =600V Rg = 10Ω , VGE = +15V to 0V
4 CT2
FULL SQUARE 5 — — — — 845 115 40 — — — — µs µJ ns A
VCC = 400V, Vp =600V Rg = 10Ω , VGE = +15V to 0V TJ = 175°C VCC = 400V, IF = 48A VGE = 15V, Rg = 10Ω , L =200µH, Ls = 150nH
22, CT3 WF4 17, 18, 19 20, 21
WF3
Notes: VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 10Ω. This is only applied to TO-247AC package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGP4063DPbF
100 90 80 70 350 300 250
50 40 30 20 10 0 0 25 50 75 100 125 150 175 200 T C (°C)
Ptot (W)
60
IC (A)
200 150 100 50 0 0 25 50 75 100 125 150 175 200 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
1000
Fig. 2 - Power Dissipation vs. Case Temperature
1000
100
10µsec 100µsec
100
IC (A)
IC (A)
10
1msec
DC
10
1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 VCE (V) 100 1000
1 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V
200 180 160 140 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V
200 180 160 140
ICE (A)
ICE (A)
120 100 80 60 40 20 0 0 2 4 6
120 100 80 60 40 20 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
8
10
0
2
4
6
8
10
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
VCE (V)
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
www.irf.com
3
IRGP4063DPbF
200 180 160 140 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
200 180 160 140 120 -40°c 25°C 175°C
ICE (A)
120 100 80 60 40 20 0 0 2 4 6 8 10
IF (A)
100 80 60 40 20 0 0.0
1.0
2.0 VF (V)
3.0
4.0
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs
20 18 16 14
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
20 18 16 14
VCE (V)
10 8 6 4 2 0 5 10 VGE (V)
VCE (V)
12
ICE = 24A ICE = 48A ICE = 96A
12 10 8 6 4 2 0
ICE = 24A ICE = 48A ICE = 96A
15
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
20 18 16 14
VCE (V)
ICE (A)
200 180 160 140
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
T J = 25°C T J = 175°C
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 24A ICE = 48A ICE = 96A
120 100 80 60 40 20 0
15
20
0
5 VGE (V)
10
15
Fig. 11 - Typical VCE vs. VGE TJ = 175°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
4
www.irf.com
IRGP4063DPbF
6000 5000 EOFF 4000
1000
Swiching Time (ns)
Energy (µJ)
tdOFF 100 tdON tF tR
3000 2000 1000 0 0 50 IC (A)
EON
10
100 150
0
20
40 IC (A)
60
80
100
Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V
5000 4500 4000 EOFF EON
Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V
1000 tdOFF
Swiching Time (ns)
Energy (µJ)
3500 3000 2500 2000 1500 1000 0 25 50 75
tR 100 tF
tdON
10
100 125
0
25
50
75
100
125
Rg ( Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 48A; VGE = 15V
45 40 35 30
IRR (A)
Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 48A; VGE = 15V
45
R G = 10Ω
40 35
IRR (A)
25 20 15 10 5 0 0 20
R G = 22Ω R G = 47Ω RG = 100Ω
30 25 20 15 10
40 IF (A)
60
80
100
0
25
50
75
100
125
RG (Ω)
Fig. 17 - Typ. Diode IRR vs. IF TJ = 175°C
Fig. 18 - Typ. Diode IRR vs. RG TJ = 175°C
www.irf.com
5
IRGP4063DPbF
45 40 35
4000 3500
96A
3000
QRR (µC)
48A
IRR (A)
30 25 20 15 10 0 200 400 600 800 1000 diF /dt (A/µs)
10Ω
2500 2000 1500 1000
100Ω 47Ω
22Ω 24A
0
500
1000
1500
diF /dt (A/µs)
Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 48A; TJ = 175°C
900 800 700 600 R G = 22Ω R G = 10Ω
Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C
18 16 14
Time (µs)
400 350 300
Energy (µJ)
Current (A)
500 400 300 200 100 0 0 20 40 IF (A) 60 80 100 RG = 100Ω RG = 47Ω
12 10 8 6 4 8 10 12 14 16 18 VGE (V)
250 200 150 100 50
Fig. 21 - Typ. Diode ERR vs. IF TJ = 175°C
10000 Cies
Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C
16 14 12 10 8 6 4 2 0 V CES = 300V V CES = 400V
Capacitance (pF)
1000
Coes 100 Cres 10 0 20 40 60 80 100 VCE (V)
VGE, Gate-to-Emitter Voltage (V)
0
25
50
75
100
Q G, Total Gate Charge (nC)
Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE ICE = 48A; L = 600µH
6
www.irf.com
IRGP4063DPbF
1 D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.01
τJ
τ1
τ2
Ri (°C/W) τi (sec) 0.0872 0.000114 0.1599 0.001520 0.2020 0.020330
0.001
Ci= τi /Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01
τJ τJ τ1
R1 R1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
0.01
Ri (°C/W) τi (sec) 0.2774 0.000908 0.3896 0.2540 0.003869 0.030195
τ1
τ2
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi /Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.0001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGP4063DPbF
L
L
0
D UT 1K
VC C
80 V Rg
DU T
4 80V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp / DU T
L
4x
DC
360V
- 5V DU T / D RIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
C force
400µH D1 10K C sense
DUT
Rg
VCC
G force
DUT
0.0075µ
E sense E force
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
8
www.irf.com
IRGP4063DPbF
700 600 500 400 VCE (V) 300
90% ICE
140 120 100 80
600 500 tr 400 300 200
10% test TEST CURRE 90% test
120 100 80 60 40 20 0 EON -20 7.00
60 40 20 0 -20 1.10
200 100 0 -100 -0.40
5% VCE 5% ICE
VCE (V)
tf
100 0 -100 6.20
5% VCE
EOFF Loss 0.10 0.60
6.40
6.60 Time (µs)
6.80
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4
60 50 40 30 20 IRR (A) 10 0 -10 -20 -30 -40 -0.15 Peak IRR
10% Peak IRR
600 500
QRR tRR
600 500 VCE ICE 400 300 200 100 0 -100 10.00
400 300 200 100 0 -100 -5.00
VCE (V)
-0.05
0.05
0.15
0.25
0.00
5.00
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4
time (µS) Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3
www.irf.com
ICE (A)
9
IRGP4063DPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSAQ@"Ã XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
,5)3(
à "$C $%ÃÃÃÃÃÃÃÃÃÃÃ$&
96U@Ã8P9@ `@6SÃ Ã2Ã! X@@FÃ"$ GDI@ÃC
TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 05/06
10
www.irf.com