PD - 96170
SMPS IGBT
IRGP50B60PD1-EP
C
WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE
Applications
• • • • • • • • • • • • Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies Lead-Free NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability
VCES = 600V VCE(on) typ. = 2.00V @ VGE = 15V IC = 33A
G E
Features
n-channel
Equivalent MOSFET Parameters RCE(on) typ. = 61mΩ ID (FET equivalent) = 50A
Benefits
• Parallel Operation for Higher Current Applications • Lower Conduction Losses and Switching Losses • Higher Switching Frequency up to 150kHz
TO-247AD
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFRM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current
Max.
600 75 45 150 150 40 15 60 ±20 390 156 -55 to +150
Units
V
d
A
Diode Continous Forward Current Diode Continous Forward Current Maximum Repetitive Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature for 10 sec. Mounting Torque, 6-32 or M3 Screw
e
V W
°C 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (Diode) RθCS RθJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Weight
Min.
––– ––– ––– ––– –––
Typ.
––– ––– 0.24 ––– 6.0 (0.21)
Max.
0.32 1.7 ––– 40 –––
Units
°C/W
g (oz)
08/06/08 1 www.irf.com
IRGP50B60PD1-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
Min.
600 — — — — — —
Typ.
— 0.31 1.7 2.00 2.45 2.60 3.20 4.0 -10 41 5.0 1.0 1.30 1.20 —
Max. Units
— — — 2.35 2.85 2.95 3.60 5.0 — — 500 — 1.70 1.60 ±100 nA V V V Ω
Conditions
VGE = 0V, IC = 500µA 1MHz, Open Collector IC = 33A, VGE = 15V IC = 50A, VGE = 15V IC = 33A, VGE = 15V, TJ = 125°C IC = 50A, VGE = 15V, TJ = 125°C IC = 250µA
Ref.Fig
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
V/°C VGE = 0V, IC = 1mA (25°C-125°C)
4, 5,6,8,9
RG VCE(on)
Internal Gate Resistance Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
3.0 — — — — — — —
7,8,9
gfe ICES VFM IGES
mV/°C VCE = VGE, IC = 1.0mA S VCE = 50V, IC = 33A, PW = 80µs µA mA V VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 125°C IF = 15A, VGE = 0V IF = 15A, VGE = 0V, TJ = 125°C VGE = ±20V, VCE = 0V
10
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qgc Qge Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres Coes eff. Coes eff. (ER) RBSOA trr Qrr Irr Total Gate Charge (turn-on) Gate-to-Collector Charge (turn-on) Gate-to-Emitter Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Time Related)
Min.
— — — — — — — — — — — — — — — — — — — —
Typ.
205 70 30 255 375 630 30 10 130 11 580 480 1060 26 13 146 15 3648 322 56 215 163
Max. Units
308 105 45 305 445 750 40 15 150 15 700 550 1250 35 20 165 20 — — — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 33A VCC = 400V VGE = 15V
Conditions
Ref.Fig 17 CT1
IC = 33A, VCC = 390V VGE = +15V, RG = 3.3Ω, L = 200µH TJ = 25°C
CT3
fÃÃ
IC = 33A, VCC = 390V VGE = +15V, RG = 3.3Ω, L = 200µH TJ = 25°C
CT3
fÃÃ f
IC = 33A, VCC = 390V VGE = +15V, RG = 3.3Ω, L = 200µH TJ = 125°C IC = 33A, VCC = 390V VGE = +15V, RG = 3.3Ω, L = 200µH TJ = 125°C
CT3 11,13 WF1,WF2 CT3 12,14 WF1,WF2
ÃfÃÃ
16
Effective Output Capacitance (Energy Related) Reverse Bias Safe Operating Area Diode Reverse Recovery Time Diode Reverse Recovery Charge Peak Reverse Recovery Current
g
g
— —
f = 1Mhz VGE = 0V, VCE = 0V to 480V TJ = 150°C, IC = 150A
15
3 CT2
FULL SQUARE — — — — — — 42 74 80 220 4.0 6.5 60 120 180 600 6.0 10 A nC ns
VCC = 480V, Vp =600V Rg = 22Ω, VGE = +15V to 0V TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C IF = 15A, VR = 200V, di/dt = 200A/µs IF = 15A, VR = 200V, di/dt = 200A/µs IF = 15A, VR = 200V, di/dt = 200A/µs
19
21
19,20,21,22
CT5
Notes: RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 2.00V and IC =33A. ID (FET Equivalent) is the equivalent MOSFET ID
rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω. Pulse width limited by max. junction temperature. Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06.
Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES.
Coes eff.(ER) is a fixed capacitance that stores the same energy as C oes while VCE is rising from 0 to 80% VCES.
2
www.irf.com
IRGP50B60PD1-EP
90 80 70 60
IC (A)
450 400 350 300
Ptot (W)
50 40 30 20 10 0 0 20 40 60 80 100 120 140 160 T C (°C)
250 200 150 100 50 0 0 20 40 60 80 100 120 140 160 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
1000
Fig. 2 - Power Dissipation vs. Case Temperature
200 180 160 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V
100
140
ICE (A)
120 100 80 60 40 20
IC A)
10
1 10 100 1000
0 0 1 2 3 4 5 6 7 8 9 10
VCE (V)
VCE (V)
Fig. 3 - Reverse Bias SOA TJ = 150°C; VGE =15V
200 180 160 140
ICE (A)
200
Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
180 160 140
ICE (A)
120 100 80 60 40 20 0 0
VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V
120 100 80 60 40 20 0
VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V
1
2
3
4
5
6
7
8
9
10
0
1
2
3
4
5
6
7
8
9
10
VCE (V)
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs
www.irf.com
3
IRGP50B60PD1-EP
900 800 700 600
ICE (A)
10 T J = 25°C T J = 125°C 9 8 7
VCE (V)
500 400 300 200 100 0 0 5 10 VGE (V) 15 20 TJ = 125°C T J = 25°C
6 5 4 3 2 1 0 5 10 VGE (V)
ICE = 15A ICE = 33A ICE = 50A
15
20
Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
10 9 8 7
VCE (V)
I sa t n o sF r adCr e t -I ( ) n t n e u owr ur n a A
F
100
Fig. 8 - Typical VCE vs. VGE TJ = 25°C
6 5 4 3 2 1 0 5 10 VGE (V)
ICE = 15A ICE = 33A ICE = 50A
10
TJ = 150°C TJ = 125°C TJ = 25°C
15
20
1 0.8
1.2
1.6
2.0
2.4
F orward Voltage Drop - V FM (V)
Fig. 9 - Typical VCE vs. VGE TJ = 125°C
1200 1000 800
Energy (µJ)
Fig. 10 - Typ. Diode Forward Characteristics tp = 80µs
1000
Swiching Time (ns)
EON 600 EOFF 400 200 0 0 10 20 30 IC (A) 40 50 60
td OFF
100
tF tdON tR
10 0 10 20 30 40 50 60
IC (A)
Fig. 11 - Typ. Energy Loss vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3)
Fig. 12 - Typ. Switching Time vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3)
4
www.irf.com
IRGP50B60PD1-EP
1000 900 800
1000
Energy (µJ)
EON
700 600 500 400 300 0 5 10 15 20 25
Swiching Time (ns)
tdOFF
100
EOFF
td ON tF
10 0
tR
5 10 15 20 25
RG ( Ω)
RG ( Ω)
Fig. 13 - Typ. Energy Loss vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3)
40
Fig. 14 - Typ. Switching Time vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3)
10000
Cies
30
Capacitance (pF)
1000
Eoes (µJ)
20
Coes
100
10
Cres
0 0 100 200 300 400 500 600 700 VCE (V)
10 0 20 40 60 80 100
VCE (V)
Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE
16 14
Normalized V CE(on) (V)
Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
1.4
12 10
VGE (V)
400V
1.2
8 6 4 2 0 0 50 100 150 200 250 Q G , Total Gate Charge (nC)
1.0
0.8 -50 0 50 100 150 200 T J (°C)
Fig. 17 - Typical Gate Charge vs. VGE ICE = 33A
Fig. 18 - Normalized Typ. VCE(on) vs. Junction Temperature IC = 33A, VGE= 15V
www.irf.com
5
IRGP50B60PD1-EP
100
100
VR = 200V TJ = 125°C TJ = 25°C
80
VR = 200V TJ = 125°C TJ = 25°C
I F = 30A
I F = 30A
60
I IRRM - (A)
t rr - (ns)
I F = 15A
10
IF = 15A
40
I F = 5.0A
I F = 5.0A
20 100
di f /dt - (A/µs)
1000
1 100
di f /dt - (A/µs)
1000
Fig. 19 - Typical Reverse Recovery vs. dif/dt
Fig. 20 - Typical Recovery Current vs. dif/dt
800
1000
VR = 200V TJ = 125°C TJ = 25°C
600
VR = 200V TJ = 125°C TJ = 25°C
IF = 30A
di(rec)M/dt - (A/µs)
Q RR - (nC)
400
I F = 5.0A I F = 15A I F = 30A
I F = 15A IF = 5.0A
200
0 100
di f /dt - (A/µs)
1000
100 100
di f /dt - (A/µs)
1000
Fig. 21 - Typical Stored Charge vs. dif/dt
Fig. 22 - Typical di(rec)M/dt vs. dif/dt,
6
www.irf.com
IRGP50B60PD1-EP
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20 0.10 0.05
R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ
0.01
0.01 0.02 SINGLE PULSE ( THERMAL RESPONSE )
τJ
Ri (°C/W) τi (sec) 0.157 0.000346 0.163 4.28
0.001
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 0.01 0.1 1 10
0.0001 1E-006 1E-005 0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
0.1
0.05 0.01 0.02
τJ
R1 R1 τJ τ1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
Ri (°C/W) τi (sec) 0.363 0.000112 0.864 0.473 0.001184 0.032264
τ1
τ2
0.01
Ci= τi /Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGP50B60PD1-EP
L
L
0
DUT 1K
VCC
80 V Rg
DUT
480V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
PFC diode
L
R=
VCC ICM
DUT / DRIVER
Rg
VCC
Rg
DUT
VCC
Fig.C.T.3 - Switching Loss Circuit
Fig.C.T.4 - Resistive Load Circuit
REVERSE RECOVERY CIRCUIT
VR = 200V
0.01 Ω L = 70µH D.U.T. dif/dt ADJUST D G IRFP250 S
Fig. C.T.5 - Reverse Recovery Parameter Test Circuit
8
www.irf.com
IRGP50B60PD1-EP
600 550 500 450 400 350 VCE (V) 300 250 200 150 100 50 0 -50 -100 -0.20 0.00
Eof f 5% V CE tf 90% ICE
60 50 40 30 20 10 0 -10 0.40
450 400 350 300 250 V CE (V)
ICE (A)
90% ICE
90 80 70 60 50 40 30
5% V CE 10% ICE
tr
TEST CURRENT
200 150 100 50 0 -50 -0.10
20 10
5% ICE
Eon Loss
0 -10 0.20
0.20
0.00
0.10
Time (µs)
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 25°C using Fig. CT.3
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 25°C using Fig. CT.3
3
IF 0
trr ta tb
4
2
Q rr I RRM
0.5 I RRM di(rec)M/dt 0.75 I RRM
5
1
di f /dt
4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M /dt - Peak rate of change of current during tb portion of trr
1. dif/dt - Rate of change of current through zero crossing 2. I RRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going I F to point where a line passing through 0.75 I RRM and 0.50 IRRM extrapolated to zero current
Fig. WF3 - Reverse Recovery Waveform and Definitions
www.irf.com
ICE (A)
9
IRGP50B60PD1-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSBQ"7 !F9@ XDUCÃ6TT@H7G`Ã GPUÃ8P9@Ã$%$& 6TT@H7G@9ÃPIÃXXÃ"$Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅCÅ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
Ã"$C $%ÃÃÃÃÃÃÃÃÃÃÃ$&
96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ"$ GDI@ÃC
TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/2008
10
www.irf.com