PD- 95967
IRGPS40B120UDP
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
• Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • Super-247 Package. • Lead-Free
C
UltraFast Co-Pack IGBT
VCES = 1200V VCE(on) typ. = 3.12V
G E
@ VGE = 15V,
N-channel
ICE = 40A, Tj=25°C
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Significantly Less Snubber Required • Excellent Current Sharing in Parallel Operation.
Super-247™
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec.
Max.
1200 80 40 160 160 80 40 160 ± 20 595 238 -55 to +150 300 (0.063 in. (1.6mm) from case)
Units
V
A
V W
°C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA Wt Le Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Recommended Clip Force Weight Internal Emitter Inductance (5mm from package)
Min.
––– ––– ––– ––– 20 (2) ––– –––
Typ.
––– ––– 0.24 ––– ––– 6.0 (0.21) 13
Max.
0.20 0.83 ––– 40 ––– ––– –––
Units
°C/W
N(kgf) g (oz) nH
www.irf.com
1
11/19/04
IRGPS40B120UDP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM
IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 1200 ––– Temperature Coeff. of Breakdown Voltage ––– 0.40 Collector-to-Emitter Saturation Voltage ––– 3.12 ––– 3.39 ––– 3.88 ––– 4.24 Gate Threshold Voltage 4.0 5.0 Temperature Coeff. of Threshold Voltage ––– -12 Forward Transconductance ––– 30.5 Zero Gate Voltage Collector Current ––– ––– ––– 420 Diode Forward Voltage Drop ––– 2.03 ––– 2.17 ––– 2.26 ––– 2.46 Gate-to-Emitter Leakage Current ––– –––
Ref.Fig. Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-125°C) 5, 6 3.40 IC = 40A VGE = 15V 7, 9 3.70 V IC = 50A 10 4.30 IC = 40A, TJ = 125°C 4.70 IC = 50A, TJ = 125°C 11 9,10 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-125°C) 11 ,12 ––– S VCE = 50V, IC = 40A, PW=80µs 500 µA VGE = 0V, VCE = 1200V 1200 VGE = 0V, VCE = 1200V, TJ = 125°C 2.40 IC = 40A 8 2.60 V IC = 50A 2.68 IC = 40A, TJ = 125°C 2.95 IC = 50A, TJ = 125°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Max. Units Conditions 510 IC = 40A 60 nC VCC = 600V 248 VGE = 15V 1750 µJ IC = 40A, VCC = 600V 2050 VGE = 15V,RG = 4.7 Ω, L =200µH 3800 Ls = 150nH TJ = 25°C 2300 TJ = 125°C 2950 µJ Energy losses include "tail" and 5250 diode reverse recovery. 99 IC = 40A, VCC = 600V 55 VGE = 15V, RG = 4.7Ω L =200µH 365 ns Ls = 150nH, T J = 125°C 33 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz TJ = 150°C, IC = 160A, Vp =1200V FULL SQUARE VCC = 1000V, VGE = +15V to 0V RG = 4.7Ω TJ = 150°C, Vp =1200V 10 ––– ––– µs VCC = 900V, VGE = +15V to 0V, RG = 4.7Ω ––– 3346 ––– µJ TJ = 125°C ––– 180 ––– ns VCC = 600V, IF = 60A, L =200µH ––– 50 ––– A VGE = 15V,RG = 4.7Ω, Ls = 150nH Typ. 340 40 165 1400 1650 3050 1950 2200 4150 76 39 332 25 4300 330 160
Ref.Fig.
23 CT1 CT4 WF1 WF2 13,15
14, 16 CT4 WF1 WF2 22
4 CT2 CT3 WF4
17,18,19
SCSOA Erec trr Irr
Short Circuit Safe Operting Area Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current
20, 21
CT4,WF3
2
www.irf.com
IRGPS40B120UDP
100 700 600 80 500
Ptot (W)
60
IC (A)
400 300 200
40
20 100 0 0 20 40 60 80 100 120 140 160 T C (°C) 0 0 50 100 T C (°C) 150 200
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
1000
1000
100
2 µs 10 µs
100
IC (A)
10 DC 1
100 µs 1ms
IC A)
10 1 10 100 1000 10000
10ms
0.1 1 10 100 VCE (V) 1000 10000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJS ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGPS40B120UDP
80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
80 70 60 50
ICE (A)
60
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
40
40 30
20
20 10
0 0 1 2 3 VCE (V) 4 5 6
0 0 1 2 3 VCE (V) 4 5 6
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
80 70 60 50
ICE (A)
80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
IF (A)
70 60 50 40 30 20 10 0
-40°C 25°C 125°C
40 30 20 10 0 0 1 2 3 VCE (V) 4 5 6
0
1
2 VF (V)
3
4
Fig. 7 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRGPS40B120UDP
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 20A ICE = 40A ICE = 80A 12 10 8 6 4 2 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 20A ICE = 40A ICE = 80A
12 10 8 6 4 2 0
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
VCE (V) ICE (A)
500 450 400 350 ICE = 20A ICE = 40A ICE = 80A 300 250 200 150 100 50 0 5 10 VGE (V) 15 20 0 5 10 VGE (V) 15 20 T J = 125°C T J = 25°C T J = 25°C T J = 125°C
12 10 8 6 4 2 0
Fig. 11 - Typical VCE vs. VGE TJ = 125°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRGPS40B120UDP
4500 4000 3500 3000
Energy (µJ)
1000
tdOFF
Swiching Time (ns)
2500 2000 1500 1000 500 0 0 20
EOFF EON
100
td ON tF tR
40 IC (A)
60
80
10 20 40 60 80
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 125°C; L=200µH; VCE= 600V RG= 4.7Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 125°C; L=200µH; VCE= 600V RG= 4.7Ω; VGE= 15V
5000 4500 4000 3500
1000
tdOFF EOFF
3000 2500 2000 1500 1000 500 0 0 5 10
EON
Swiching Time (ns)
Energy (µJ)
100
tdON tR tF
10 15 20 25 0 5 10 15 20 25
RG (Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 125°C; L=200µH; VCE= 600V ICE= 40A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 125°C; L=200µH; VCE= 600V ICE= 40A; VGE= 15V
6
www.irf.com
IRGPS40B120UDP
60 60 50 50
RG = 4.7Ω
40 40
IRR (A)
30
IRR (A)
60 80 100
30
RG = 22 Ω
20
RG = 47 Ω RG = 100 Ω
20
10
10
0 0 20 40
0 0 50 100 150
IF (A)
RG (Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 40A
60
9 8 4.7Ω 22Ω 47 Ω 40A 80A
50
7
40
6
Q RR (µC)
IRR (A)
5 4 3 2 100Ω 20A
30
20
10
1 0
0 500 1000 1500
0
0
500
1000
1500
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; ICE= 40A; TJ = 125°C
Fig. 20 - Typical Diode QRR VCC= 600V; VGE= 15V;TJ = 125°C
www.irf.com
7
IRGPS40B120UDP
3500 3000 2500
4.7Ω 22Ω 47Ω 100Ω
Energy (µJ)
2000 1500 1000 500 0 0 20 40 60 80
100
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 125°C
10000
16
Cies
14 12 600V 800V
Capacitance (pF)
1000
10
VGE (V)
Coes Cres
100
8 6 4 2
10 0 20 40 60 80 100
0 0 100 200 300 400 Q G , Total Gate Charge (nC)
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 40A; L = 600µH
8
www.irf.com
IRGPS40B120UDP
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.01 0.02
0.1
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1 1
0.01 1E-005 0.0001 0.001
t1 , Rectangular Pulse Duration (sec)
Fig 24. Normalized Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20
0.1
0.10 0.05 0.01 0.02 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1 1 10
0.01
0.001 1E-005 0.0001 0.001
t1 , Rectangular Pulse Duration (sec)
Fig 25. Normalized Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGPS40B120UDP
L
L DUT
0
VCC
80 V Rg
DUT
1000V
1K
Fig.C.T.1 - Gate Charge Circuit (turn-on)
Fig.C.T.2 - RBSOA Circuit
Driver
D C
diode clamp / DUT
L
900V
- 5V DUT / DRIVER
Rg
VCC
DUT
Fig.C.T.3 - RBSOA Circuit
Fig.C.T.4 - RBSOA Circuit
R=
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - RBSOA Circuit
10
www.irf.com
IRGPS40B120UDP
Fig. WF.1 - Typ. Turn-off Loss Waveform @ Tj=125°C using Fig. CT.4 1100 1000 900 800 700 VCE (V) 600 ICE (A) 500 400 300 200 100 0 -100 -0.20 0.00
Eoff Loss 5% ICE 90% ICE
Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125C using Fig. CT.4 900 800 90 80 70 60
TEST CURRENT
50
40
700 600 500 VCE (V)
30
50
90% test current 10% test current
tf
20
400 300 200 100
40 30
5% V CE
10
5% V CE
20 10 0 -10 4.60
0
0 -100 4.10
0.20
0.40
0.60
-10 0.80
4.20
4.30
4.40
4.50
Time (µs)
Time(µs)
Fig. WF.3 - Typ. Diode Recovery W aveform @Tj=125°C using Fig. CT.4 300 200 100 0 -100 V F (V) -200 -300 -400 -500 -600 -700 -800 -0.25
Peak IRR 10% Peak IRR
Fig. WF.4 - Typ. S.C. Waveform @ TC=150°C using Fig. CT.3
50 40 QRR tRR 30 20 10
V CE (V)
1000 900 V CE 800 700 600 ICE
500 450 400 350 300 250 200 150 100 50 0 15.00 I CE (A)
I F (A)
0 -10 -20 -30 -40 -50 -60 0.25 time (µS) 0.75
500 400 300 200 100 0 -5.00
0.00
5.00 time (µS)
10.00
www.irf.com
I CE (A)
11
IRGPS40B120UDP
Case Outline and Dimensions — Super-247
Super-247 (TO-274AA) Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" PART NUMBER INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE
IRFPS37N50A 719C 17 89
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
Note: "P" in assembly line position indicates "Lead-Free"
TOP
VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 4.7Ω. Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/04
12
www.irf.com