PD- 94239A
IRGPS60B120KD
INSULATED GATE BIPOLAR TRANSISTOR WITH Motor Control Co-Pack IGBT ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • Super-247 Package.
VCES = 1200V VCE(on) typ. = 2.50V
G E
@ VGE = 15V,
N-channel
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Significantly Less Snubber Required • Excellent Current Sharing in Parallel Operation.
ICE = 60A, Tj=25°C
Super-247™
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec.
Max.
1200 105 60 240 240 120 60 240 ± 20 595 238 -55 to +150 300 (0.063 in. (1.6mm) from case)
Units
V
A
V W
°C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA Wt Le Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Recommended Clip Force Weight Internal Emitter Inductance (5mm from package)
Min.
––– ––– ––– ––– 20 (2) ––– –––
Typ.
––– ––– 0.24 ––– ––– 6.0 (0.21) 13
Max.
0.20 0.41 ––– 40 ––– ––– –––
Units
°C/W
N(kgf) g (oz) nH
www.irf.com
1
8/18/04
IRGPS60B120KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM
IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 1200 ––– Temperature Coeff. of Breakdown Voltage ––– 0.40 Collector-to-Emitter Saturation Voltage ––– 2.33 ––– 2.50 ––– 2.79 ––– 3.04 Gate Threshold Voltage 4.0 5.0 Temperature Coeff. of Threshold Voltage ––– -12 Forward Transconductance ––– 34.4 Zero Gate Voltage Collector Current ––– ––– ––– 650 Diode Forward Voltage Drop ––– 1.82 ––– 1.93 ––– 1.96 ––– 2.13 Gate-to-Emitter Leakage Current ––– –––
Ref.Fig. Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, I C = 1.0mA, (25°C-125°C) 5, 6 2.50 IC = 50A VGE = 15V 7, 9 2.75 V IC = 60A 10 3.1 IC = 50A, TJ = 125°C 3.5 IC = 60A, TJ = 125°C 11 9,10 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, I C = 1.0mA, (25°C-125°C) 11 ,12 ––– S VCE = 50V, IC = 60A, PW=80µs 500 µA VGE = 0V, VCE = 1200V 1350 VGE = 0V, VCE = 1200V, TJ = 125°C 2.10 IC = 50A 8 2.20 V IC = 60A 2.20 IC = 50A, TJ = 125°C 2.40 IC = 60A, TJ = 125°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. Max. Units Conditions 340 510 IC = 60A 40 60 nC VCC = 600V 165 248 VGE = 15V 3214 4870 µJ IC = 60A, VCC = 600V 4783 5450 VGE = 15V,RG = 4.7Ω, L =200µH 8000 10320 Ls = 150nH T J = 25°C 5032 6890 TJ = 125°C 7457 8385 µJ Energy losses include "tail" and 12500 15275 diode reverse recovery. 72 94 IC = 15A, VCC = 600V 32 45 VGE = 15V, RG = 4.7Ω L =200µH 366 400 ns Ls = 150nH, TJ = 125°C 45 58 4300 ––– VGE = 0V 395 ––– pF VCC = 30V 160 ––– f = 1.0MHz TJ = 150°C, IC = 240A, Vp =1200V FULL SQUARE VCC = 1000V, VGE = +15V to 0V RG = 4.7 Ω TJ = 150°C, Vp =1200V 10 ––– ––– µs VCC = 900V, VGE = +15V to 0V, RG = 4.7 Ω ––– 3346 ––– µJ TJ = 125°C ––– 180 ––– ns VCC = 600V, IF = 60A, L =200µH ––– 50 ––– A VGE = 15V,RG = 4.7Ω, Ls = 150nH
Ref.Fig.
23 CT1 CT4 WF1 WF2 13,15
14, 16 CT4 WF1 WF2 22
4 CT2 CT3 WF4
17,18,19
SCSOA Erec trr Irr
Short Circuit Safe Operting Area Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current
20, 21
CT4,WF3
2
www.irf.com
IRGPS60B120KD
140 LIMITED BY PACKAGE 120 100
600 500 700
P tot (W)
0 20 40 60 80 100 120 140 160
IC (A)
80 60 40 20 0
400 300 200 100 0 0 50 100 150 200
T C (°C)
TC (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
1000
1000
100
2 µs 10 µs
100
IC (A)
10 DC 1
100 µs 1ms
IC A)
10 1 10 100 1000 10000
10ms
0.1 1 10 100 VCE (V) 1000 10000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJS ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGPS60B120KD
120 100 80
ICE (A)
120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 80
ICE (A)
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
60 40 20 0 0 1 2 3 VCE (V) 4 5
60 40 20 0 0 1 2 3 VCE (V) 4 5
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
120 100 80
ICE (A)
120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 80
IF (A)
-40°C 25°C 125°C
60 40 20 0 0 1 2 3 VCE (V) 4 5
60 40 20 0 0 1 VF (V) 2 3
Fig. 7 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRGPS60B120KD
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 30A ICE = 60A ICE = 120A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 30A ICE = 60A ICE = 120A
12 10 8 6 4 2 0
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
500 450 400 350
ICE (A)
T J = 25°C T J = 125°C
VCE (V)
12 10 8 6 4 2 5 10 VGE (V)
ICE = 30A ICE = 60A ICE = 120A
300 250 200 150 100 50 0 0 5 10 VGE (V) T J = 125°C T J = 25°C 15 20
15
20
Fig. 11 - Typical VCE vs. VGE TJ = 125°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRGPS60B120KD
12000 10000 8000
Energy (µJ)
1000
tdOFF
6000 4000 2000 0 0 20
EOFF
Swiching Time (ns)
100
tdON tF tR
EON
40 IC (A)
60
80
100
10 20 40 60 80 100
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 125°C; L=200µH; VCE= 600V RG= 4.7Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 125°C; L=200µH; VCE= 600V RG= 4.7Ω; VGE= 15V
25000
10000
20000
tdOFF
Swiching Time (ns)
EON
Energy (µJ)
15000
1000
EOFF
10000
tdON tR
100
tF
5000
0 0 50 100 150
10 0 50 100 150
RG ( Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 125°C; L=200µH; VCE= 600V ICE= 60A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 125°C; L=200µH; VCE= 600V ICE= 60A; VGE= 15V
6
www.irf.com
IRGPS60B120KD
70 60 50 40 60
RG = 4.7Ω
50
IRR (A)
IRR (A)
60 80 100
40 30 20 10 0 0 20
RG = 22 Ω RG = 47 Ω RG = 100 Ω
30
20
10
0 40 0 50 100 150
IF (A)
RG ( Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 60A
60
12
RG = 4.7Ω
50
11 10 9 47 Ω 22Ω
4.7Ω
90A 60A
40
Q RR (µC)
RG = 22 Ω
8 7 6 5 100Ω 30A
IRR (A)
30
RG = 47 Ω
20
RG = 100 Ω
10
4 3 2 0 500 1000 1500
0 0 500 1000 1500
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; ICE= 60A; TJ = 125°C
Fig. 20 - Typical Diode QRR VCC= 600V; VGE= 15V;TJ = 125°C
www.irf.com
7
IRGPS60B120KD
4000 3500 3000
Energy (µJ)
2500 2000 1500 1000 500 0 0
4.7Ω 22Ω 47Ω 100Ω
20
40
60
80
100
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 125°C
10000
16
Cies
14 12 600V 800V
Capacitance (pF)
1000
10
Coes Cres
100
VGE (V)
8 6 4 2
10 0 20 40 60 80 100
0 0 50 100 150 200 250 300 350 400 Q G , Total Gate Charge (nC)
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 60A; L = 600µH
8
www.irf.com
IRGPS60B120KD
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.01 0.02
0.1
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1 1
0.01 1E-005 0.0001 0.001
t1 , Rectangular Pulse Duration (sec)
Fig 24. Normalized Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20
0.1
0.10 0.05 0.01 0.02 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE ( THERMAL RESPONSE )
0.0001 0.001 0.01
0.01 1E-005 0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Normalized Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGPS60B120KD
L
L DUT
0
VCC
80 V Rg
DUT
1000V
1K
Fig.C.T.1 - Gate Charge Circuit (turn-on)
Fig.C.T.2 - RBSOA Circuit
Driver
D C
diode clamp / DUT
L
900V
- 5V DUT / DRIVER
Rg
VCC
DUT
Fig.C.T.3 - RBSOA Circuit
Fig.C.T.4 - RBSOA Circuit
R=
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - RBSOA Circuit
10
www.irf.com
IRGPS60B120KD
Fig. WF1 - Typ. Turn-off Loss Waveform @ Tj=125°C using Fig. CT.4 900 800 700 600 tr 500 VCE (V) 400 300 200
5% V CE 90% ICE
Fig. WF2 - Typ. Turn-On Loss Waveform @ Tj=125°C using Fig. CT.4
90 80 70 60
800 700 600 500
TEST CURRENT
120 105 90 75
90% test current
50 ICE (A)
VCE (V)
40 30 20
5% ICE Eof f Loss
300 200 100 0
Eon Loss tr 10% test current 5% V CE
45 30 15 0
100 0 -100 -0.50
10 0 -10 2.50
0.50
1.50
-100 4.10
4.30
4.50
-15 4.70
Time (µs)
Fig. WF.3 - Typ. Diode Recovery Waveform @ Tj=125°C using Fig. CT.4 400 200 QRR 0 tRR
VCE (V)
Time (µs)
Fig. WF.4 - Typ. S.C. Waveform @ TC=150°C using Fig. CT.3 1000 900 V CE 800 700 600 ICE 400 350 300 250 200 150 100 50 0 5.00 10.00 15.00 ICE (A) 500 450
80 60 40 20 0
Peak IRR 10% Peak IRR
VF (V)
IF (A)
-200 -400 -600 -800
500 400 300 200
-20 -40 -60
100 0 -5.00
-1000 -0.25
0.25 time (µS)
0.75
0.00
time (µS)
www.irf.com
11
ICE (A)
400
60
IRGPS60B120KD
Super-247™ Package Outline
0.13 [.005] 16.10 [.632] 15.10 [.595] 5.50 [.216] 4.50 [.178] 2.15 [.084] 1.45 [.058] 0.25 [.010] 13.90 [.547] 13.30 [.524] BA 2X R 3.00 [.118] 2.00 [.079] A
1.30 [.051] 0.70 [.028] 20.80 [.818] 19.80 [.780] 4 16.10 [.633] 15.50 [.611] 4
C 1 2 3
B Ø 1.60 [.063] MAX. E E
14.80 [.582] 13.80 [.544]
4.25 [.167] 3.85 [.152]
5.45 [.215] 2X
3X
1.60 [.062] 1.45 [.058] BA
3X
1.30 [.051] 1.10 [.044]
0.25 [.010]
SECT ION E-E NOT ES: 1. DIMENS IONING AND T OLERANCING PER AS ME Y14.5M-1994. 2. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ] 3. CONT ROLLING DIMENS ION: MILLIMET ER 4. OUT LINE CONFORMS T O JEDEC OUT LINE T O-274AA
2.35 [.092] 1.65 [.065]
LEAD ASS IGNMENT S MOSFET 1 - GAT E 2 - DRAIN 3 - S OURCE 4 - DRAIN IGBT 1 - GAT E 2 - COLLECT OR 3 - EMIT T ER 4 - COLLECT OR
Super-247™ Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE A8B9 INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE
IRFPS37N50A
PART NUMBER
A8B9
0020
Notes: VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 4.7Ω.
Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 105A.
DATE CODE (YYWW) YY = YEAR WW = WEEK TOP
Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/04
12
www.irf.com