PD - 94382D
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
C
IRGB10B60KD IRGS10B60KD IRGSL10B60KD
VCES = 600V IC = 12A, TC=100°C
Features
• Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient.
G E
tsc > 10µs, TJ=150°C
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
n-channel
VCE(on) typ. = 1.8V
TO-220AB IRGB10B60KD
D2Pak IRGS10B60KD Max.
600 22 12 44 44 22 10 44 ± 20 156 62 -55 to +150
TO-262 IRGSL10B60KD Units
V
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec.
A
V W
°C 300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state) Weight
Min.
––– ––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– ––– 1.44
Max.
0.8 3.4 ––– 62 40 –––
Units
°C/W
g
www.irf.com
1
8/18/04
IRG/B/S/SL10B60KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.20 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 7.0 Zero Gate Voltage Collector Current ––– 3.0 ––– 300 Diode Forward Voltage Drop ––– 1.30 ––– 1.30 Gate-to-Emitter Leakage Current ––– –––
Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 IC = 10A, VGE = 15V 2.50 V IC = 10A, VGE = 15V TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 10A, PW=80µs 150 µA VGE = 0V, VCE = 600V 700 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 10A 1.45 V IC = 10A TJ = 150°C ±100 nA VGE = ±20V
Ref.Fig.
5, 6,7 9,10,11 9,10,11 12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Short Circuit Safe Operting Area Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Ref.Fig. Max. Units Conditions ––– IC = 10A ––– nC VCC = 400V CT1 ––– VGE = 15V CT4 247 µJ IC = 10A, VCC = 400V 360 VGE = 15V,RG = 47Ω, L = 200µH 607 Ls = 150nH TJ = 25°C 39 IC = 10A, VCC = 400V 29 VGE = 15V, RG = 47Ω, L = 200µH CT4 262 ns Ls = 150nH, TJ = 25°C 32 CT4 340 IC = 10A, VCC = 400V 13,15 464 µJ VGE = 15V,RG = 47Ω, L = 200µH WF1WF2 804 Ls = 150nH TJ = 150°C 14, 16 39 IC = 10A, VCC = 400V CT4 28 VGE = 15V, RG = 47Ω, L = 200µH 274 ns Ls = 150nH, TJ = 150°C WF1 34 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 44A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 47Ω CT2 CT3 µs TJ = 150°C, Vp =600V,RG = 47Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 245 330 µJ TJ = 150°C 20, 21 ––– 90 105 ns VCC = 400V, IF = 10A, L = 200µH CT4,WF3 ––– 19 22 A VGE = 15V,RG = 47Ω, Ls = 150nH
Typ. 38 4.3 16.3 140 250 390 30 20 230 23 230 350 580 30 20 250 26 620 62 22
Note to are on page 15
2
www.irf.com
IRG/B/S/SL10B60KD
25 180 160 20 140 120
Ptot (W)
15
IC (A)
100 80 60
10
5
40 20
0 0 20 40 60 80 100 120 140 160 T C (°C)
0 0 20 40 60 80 100 120 140 160 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
100
10
IC (A)
10 µs
10
1
DC
100 µs 1ms
IC A)
1
20 µs
0.1 1 10 100 VCE (V) 1000 10000
0 10 100 1000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRG/B/S/SL10B60KD
40 35 30 25
ICE (A)
40 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V
ICE (A)
35 30 25 20 15 10 5 0
VGE VGE VGE VGE VGE
= 18V = 15V = 12V = 10V = 8.0V
20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6
0
1
2
3 VCE (V)
4
5
6
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
40 35 30 25
ICE (A)
40
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
IF (A)
35 30 25 20 15 10 5 0
-40°C 25°C 150°C
20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6
0.0
0.5
1.0
1.5 VF (V)
2.0
2.5
3.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRG/B/S/SL10B60KD
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 5.0A ICE = 10A ICE = 15A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 5.0A ICE = 10A ICE = 15A
12 10 8 6 4 2 0
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16
80 70 60 T J = 25°C T J = 150°C
14
VCE (V)
ICE (A)
12 10 8 6
ICE = 5.0A ICE = 10A ICE = 15A
50 40 30 20 T J = 150°C T J = 25°C 0 5 10 VGE (V) 15 20
4 2 0 5 10 VGE (V) 15 20
10 0
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRG/B/S/SL10B60KD
800 700 600
Energy (µJ)
1000
tdOFF
EOFF
500 400 300 200 100 0 0 5
Swiching Time (ns)
100
EON
tdON tF
10 0
tR
5 10 15 20 25
10 IC (A)
15
20
25
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 47Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 47Ω; VGE= 15V
500 450 400
1000
EOFF
tdOFF
300 250 200 150 100 50 0 0 50
EON
Swiching Time (ns)
350
Energy (µJ)
100
tdON tR tF
10
100
150
0
50
100
150
R G ( Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 10A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 10A; VGE= 15V
6
www.irf.com
IRG/B/S/SL10B60KD
25
R G = 10 Ω RG = 22 Ω RG = 47 Ω
25
20
20
IRR (A)
10
RG = 100 Ω
IRR (A)
15
15
10
5
5
0 0 5 10 15 20 25
0 0 50 100 150
IF (A)
RG ( Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 10A
25
1200 10 Ω 1100 22Ω 47Ω 100 Ω 800 700 600 20A 10A
20
1000
Q RR (µC)
IRR (A)
15
900
10
5
500 400
0 500 1000 1500
5.0A
0
0
500
1000
1500
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 150°C
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C
www.irf.com
7
IRG/B/S/SL10B60KD
450 400 350 300
10Ω 22 Ω
Energy (µJ)
250 200 150 100 50 0 0 5 10 15 20
47 Ω 100 Ω
25
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C
1000
16
Cies
14 300V 12 400V
Capacitance (pF)
10
VGE (V)
100
Coes
8 6
Cres
4 2 0
10 1 10 100
0
10
20
30
40
VCE (V)
Q G , Total Gate Charge (nC)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 10A; L = 600µH
8
www.irf.com
IRG/B/S/SL10B60KD
1
D = 0.50
Thermal Response ( Z thJC )
0.20
0.1
0.10 0.05 0.01 0.02
τJ τJ τ1
R1 R1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
Ri (°C/W) 0.285 0.241 0.288
τi (sec) 0.000134 0.000565 0.0083
τ1
τ2
0.01
Ci= τi /Ri Ci= i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-6 1E-5 1E-4 1E-3 1E-2
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-1 1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20 0.10 0.05 0.01 0.02
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
τJ
Ri (°C/W) τi (sec) 0.846 0.000149 1.830 1.143 0.001575 0.027005
τ1
τ2
Ci= τi /Ri Ci= i/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-3 1E-2 1E-1 1E+0
0.001 1E-6 1E-5 1E-4
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRG/B/S/SL10B60KD
L
L DUT
0
VCC
80 V
+ -
DUT
480V
1K
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp / DUT
Driver
DC
L
360V
- 5V DUT / DRIVER
Rg
VCC
DUT
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRG/B/S/SL10B60KD
600 500 400 300 tf 200
5% V CE
12 10 8 6 4 2 0
Eoff Loss
600 500 400
TEST CURRENT
30 25 20 15
90% test current 10% test current
90% ICE
V CE (V)
VCE (V)
ICE (A)
200 100 0 tr
10 5 0
100 0 -100 -0.20
5% ICE
5% V CE
Eon Loss
0.00
0.20
0.40
0.60
-2 0.80
-100 15.90
16.00
16.10
-5 16.20
time(µs)
time (µs)
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
100 QR R 0 tR R -100 -200 -300 -400 -500 -600 -0.15
Peak IRR 10% Peak IRR
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
400 V CE 350 300 250 V CE (V) ICE ICE (A) 100
15 10 5 0 IF (A) -5 -10 -15 -20 0.25
VF (V)
200 150 100 50 0 -5.00
50
-0.05
0.05 time (µS)
0.15
0.00
5.00 time (µS)
10.00
0 15.00
Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF4- Typ. S.C Waveform @ TJ = 150°C using Fig. CT.3
www.irf.com
11
I CE (A)
300
IRG/B/S/SL10B60KD
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103)
10.54 (.415) 10.29 (.405)
3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)
-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS HEXFET GATE 11234LEAD ASSIGNMENTS
IGBTs, CoPACK GATE COLLECTOR EMITTER COLLECTOR
14.09 (.555) 13.47 (.530)
2GATE DRAIN 3DRAINSOURCE SOURCE 4 - DRAIN DRAIN
1234-
4.06 (.160) 3.55 (.140)
3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.92 (.115) 2.64 (.104)
2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C
12
www.irf.com
IRG/B/S/SL10B60KD
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF 530S WITH L OT CODE 8024 AS S E MBLE D ON WW 02, 2000 IN THE AS S E MB LY L INE "L " Note: "P" in as s embly line pos ition indicates "Lead-F ree" INTE RNAT IONAL RE CT IFIE R LOGO AS S E MBL Y L OT CODE PAR T NU MBE R F 530S DAT E CODE YEAR 0 = 2000 WE EK 02 L INE L
OR
INT ERNAT IONAL RECT IF IER L OGO AS S EMB LY LOT CODE PART NUMB ER F 530S DAT E CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMB LY S IT E CODE
www.irf.com
13
IRG/B/S/SL10B60KD
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
E XAMPLE : T HIS IS AN IRL3103L LOT CODE 1789 AS S E MB LE D ON WW 19, 1997 IN T HE AS S E MB LY LINE "C" Note: "P" in as sembly line pos ition indicates "Lead-F ree" INT E RNAT IONAL RECT IFIER LOGO AS S E MB LY LOT CODE PART NUMBER
DATE CODE YE AR 7 = 1997 WEE K 19 LINE C
OR
INT E RNAT IONAL RECT IFIER LOGO PART NUMBER DATE CODE P = DE S IGNAT ES LEAD-F REE PRODUCT (OPTIONAL) YE AR 7 = 1997 WEE K 19 A = AS S E MB LY S IT E CODE
AS S E MB LY LOT CODE
14
www.irf.com
IRG/B/S/SL10B60KD
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Notes: This is only applied to TO-220AB package This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Energy losses include "tail" and diode reverse recovery.
VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 47Ω.
TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04
www.irf.com
15