PD - 95229
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
C
IRGB6B60KDPbF IRGS6B60KD IRGSL6B60KD
VCES = 600V IC = 7.0A, TC=100°C
Features
• Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • TO-220 is available in PbF as a Lead-Free
G E
tsc > 10µs, TJ=150°C
n-channel
VCE(on) typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
TO-220AB D2Pak TO-262 IRGB6B60KDPbF IRGS6B60KD IRGSL6B60KD
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec.
Max.
600 13 7.0 26 26 13 7.0 26 ± 20 90 36 -55 to +150 300 (0.063 in. (1.6mm) from case)
Units
V
A
V W
°C
Thermal Resistance
Parameter
RθJC RθJC RθCS RθJA RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state) Weight
Min.
––– ––– ––– ––– ––– –––
Typ.
––– ––– 0.50 ––– ––– 1.44
Max.
1.4 4.4 ––– 62 40 –––
Units
°C/W
g
www.irf.com
1
09/16/04
IRGB6B60KDPbF/IRGS/SL6B60KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on) VGE(th)
∆VGE(th)/∆TJ
gfe ICES VFM IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.20 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 3.0 Zero Gate Voltage Collector Current ––– 1.0 ––– 200 Diode Forward Voltage Drop ––– 1.25 ––– 1.20 Gate-to-Emitter Leakage Current ––– –––
Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 V IC = 5.0A, VGE = 15V 2.50 IC = 5.0A,VGE = 15V, TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 5.0A, PW=80µs 150 µA VGE = 0V, VCE = 600V 500 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 5.0A 1.40 V IC = 5.0A TJ = 150°C ±100 nA VGE = ±20V
Ref.Fig.
5, 6,7 9,10,11 9,10,11 12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Short Circuit Safe Operting Area Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Ref.Fig. Max. Units Conditions ––– IC = 5.0A ––– nC VCC = 400V CT1 ––– VGE = 15V CT4 210 µJ IC = 5.0A, VCC = 400V 245 VGE = 15V,R G = 100Ω, L =1.4mH 455 Ls = 150nH TJ = 25°C CT4 34 IC = 5.0A, VCC = 400V 26 VGE = 15V, RG = 100Ω L =1.4mH 230 ns Ls = 150nH, TJ = 25°C 22 CT4 260 IC = 5.0A, VCC = 400V 13,15 300 µJ VGE = 15V,R G = 100Ω, L =1.4mH WF1WF2 560 Ls = 150nH TJ = 150°C 14, 16 37 IC = 5.0A, VCC = 400V CT4 26 VGE = 15V, RG = 100Ω L =1.4mH 255 ns Ls = 150nH, TJ = 150°C WF1 27 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 26A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 100Ω CT2 CT3 µs TJ = 150°C, Vp =600V, RG = 100Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 90 175 µJ TJ = 150°C 20, 21 ––– 70 80 ns VCC = 400V, IF = 5.0A, L = 1.4mH CT4,WF3 ––– 10 14 A VGE = 15V,RG = 100Ω, Ls = 150nH
Typ. 18.2 1.9 9.2 110 135 245 25 17 215 13.2 150 190 340 28 17 240 18 290 34 10
Note: to are on page 15
2
www.irf.com
IRGB6B60KDPbF/IRGS/SL6B60KD
15 100 90 80 10
Ptot (W) IC (A)
70 60 50 40 30 20 10
5
0 0 20 40 60 80 100 120 140 160 T C (°C)
0 0 20 40 60 80 100 120 140 160 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
100
10 10 µs
IC (A)
IC A)
10
1 100 µs DC 1ms 0.1 1 10 100 VCE (V) 1000 10000
1
0 10 100 1000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGB6B60KDPbF/IRGS/SL6B60KD
20 18 16 14
ICE (A)
20 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V
ICE (A)
18 16 14 12 10 8 6 4 2 0
12 10 8 6 4 2 0 0
VGE VGE VGE VGE VGE
= 18V = 15V = 12V = 10V = 8.0V
1
2
3 VCE (V)
4
5
6
0
1
2
3 VCE (V)
4
5
6
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
20 18 16 14
ICE (A)
30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
IF (A)
25 20 15 10 5
-40°C 25°C 150°C
12 10 8 6 4 2 0 0
0 1 2 3 VCE (V) 4 5 6 0.0 0.5 1.0 VF (V) 1.5 2.0
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
4
www.irf.com
IRGB6B60KDPbF/IRGS/SL6B60KD
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 3.0A ICE = 5.0A ICE = 10A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 3.0A ICE = 5.0A ICE = 10A
12 10 8 6 4 2 0
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
VCE (V)
40 35 30
ICE = 3.0A ICE = 5.0A ICE = 10A
T J = 25°C T J = 150°C
10 8 6 4 2 0 5 10 VGE (V)
ICE (A)
12
25 20 15 10 5 T J = 150°C T J = 25°C 0 5 10 VGE (V) 15 20
15
20
0
Fig. 11 - Typical VCE vs. VGE TJ = 150°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRGB6B60KDPbF/IRGS/SL6B60KD
700 600 500
Energy (µJ)
1000
tdOFF
Swiching Time (ns)
EON
100
400 300 200 100 0 0 5 10 IC (A) 15 20 EOFF
tF tdON
10
tR
1 0 5 10 15 20
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V
250
1000
200
EOFF
Swiching Time (ns)
100
tdOFF
Energy (µJ)
150
EON
100
tdON tR tF
10
50
0 0 50 100 150 200
1 0 50 100 150 200
R G ( Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V
6
www.irf.com
IRGB6B60KDPbF/IRGS/SL6B60KD
25
20
R G = 22 Ω
20
16
RG = 47 Ω
IRR (A)
RG = 100 Ω
10
IRR (A)
15
12
8
RG = 150 Ω
5
4
0 0 5 10 15 20
0 0 50 100 150 200
IF (A)
RG ( Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 5.0A
20
1200 1000 800 47Ω 100 Ω 600 400 200 0
0 200 400 600 800 1000
16
22Ω 10A
IRR (A)
12
Q RR (µC)
150Ω
5.0A 3.0A
8
4
0
0
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 5.0A; TJ = 150°C
Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C
www.irf.com
7
IRGB6B60KDPbF/IRGS/SL6B60KD
300
22Ω
250
Energy (µJ)
200
47Ω
150
100
100 Ω 150 Ω
50 0 5 10 15
IF (A)
Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C
1000
16
Cies
14 300V 12 400V
Capacitance (pF)
100
10
Coes
VGE (V)
8 6 4 2 0
Cres
10
1 1 10 100
0
5
10
15
20
VCE (V)
Q G , Total Gate Charge (nC)
Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 23 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600µH
8
www.irf.com
IRGB6B60KDPbF/IRGS/SL6B60KD
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.01 0.02
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
τJ
Ri (°C/W) τi (sec) 0.708 0.00022 0.447 0.219 0.00089 0.01037
τ1
τ2
Ci= τi /Ri Ci= i/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-4 1E-3 1E-2 1E-1
0.001 1E-6 1E-5
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20 0.10 0.05 0.01 0.02
τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
τ1
τ2
Ri (°C/W) τi (sec) 1.194 0.000172 2.424 0.001517 0.753 0.080325
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Ci= τi /Ri Ci= i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-3 1E-2 1E-1 1E+0
0.001 1E-6 1E-5 1E-4
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGB6B60KDPbF/IRGS/SL6B60KD
L
L DUT
0
VCC
80 V
+ -
DUT
480V
1K
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp / DUT
Driver
DC
L
360V
- 5V DUT / DRIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGB6B60KDPbF/IRGS/SL6B60KD
450 400 350 300 250 VCE (V) tf 4
5% V CE 5% ICE 90% ICE
9 8 7 6 5
500
25
400
20
300
TEST CURRENT
15 ICE (A)
200 150 100 50 0 -50 -0.20
Eof f Loss
VCE (V)
I CE (A)
200
90% test current
10
3 2 1
100 tr 0
10% test current 5% V CE
5
0 Eon Loss
0 -1 0.80
0.30 time(µs)
-100 16.00
16.10
16.20 time (µs)
16.30
-5 16.40
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
50 0 QR R -50 -100 -150 V F (V) -200 -250 -300 -350 -400 -450 -0.06
Peak IRR 10% Peak IRR
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
500 50
8 6 t RR 4 2 0
VCE (V)
400 VC E 300 IC E
40
30 ICE (A)
-2 -4 -6 -8 -10 -12 0.04 0.14 0.24 time (µS)
IF (A)
200
20
100
10
0 -5.00
0.00
5.00 time (µS)
10.00
0 15.00
Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4
Fig. WF4- Typ. S.C Waveform @ TJ = 150°C using Fig. CT.3
www.irf.com
11
IRGB6B60KDPbF/IRGS/SL6B60KD
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103)
10.54 (.415) 10.29 (.405)
3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)
-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS HEXFET GATE 1LEAD ASSIGNMENTS
IGBTs, CoPACK
14.09 (.555) 13.47 (.530)
21- GATE DRAIN 32- DRAINSOURCE 3- SOURCE 4 - DRAIN 4- DRAIN 4.06 (.160) 3.55 (.140)
1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMP L E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C
12
www.irf.com
IRGB6B60KDPbF/IRGS/SL6B60KD
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
THIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLE D ON WW 02, 2000 IN T HE AS S EMBL Y LINE "L" Note: "P" in as sembly line pos ition indicates "L ead-F ree" INT ERNAT IONAL R ECTIFIER LOGO AS S EMBLY L OT CODE PART NUMBE R F530S DAT E CODE YEAR 0 = 2000 WE EK 02 LINE L
OR
INT E RNAT IONAL RE CT IF IER LOGO PART NUMBE R F 530S DAT E CODE P = DE SIGNAT ES LE AD-F RE E PRODUCT (OPT IONAL) YEAR 0 = 2000 WE EK 02 A = AS SE MBLY SIT E CODE AS S EMBLY LOT CODE
www.irf.com
13
IRGB6B60KDPbF/IRGS/SL6B60KD
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
E XAMPLE : T HIS IS AN IRL 3103L L OT CODE 1789 AS S EMB L ED ON WW 19, 1997 IN TH E AS S E MBL Y L INE "C" Note: "P" in ass embly line pos ition indicates "Lead-Free" INT E RNAT IONAL RE CT IF IER LOGO AS S E MB LY L OT CODE PART NUMBE R
DAT E CODE YE AR 7 = 1997 WE E K 19 LINE C
OR
INT E RNAT IONAL RE CT IF IER L OGO AS S E MB LY LOT CODE PART NUMBE R DAT E CODE P = DES IGNAT E S LE AD-F REE PRODUCT (OPTIONAL) YE AR 7 = 1997 WEE K 19 A = AS S EMB L Y S ITE CODE
14
www.irf.com
IRGB6B60KDPbF/IRGS/SL6B60KD
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Notes: This is only applied to TO-220AB package This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Energy losses include "tail" and diode reverse recovery. VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 100Ω. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/04
www.irf.com
15